Site: ALCOA - DAVENTO ID#: 19005270160

Break: 1,3
Other: 5-m

2-1-91

FINAL GROUND-WATER ASSESSMENT FOR THE ALCOA-DAVENPORT WASTE SITE

TABLES AND FIGURES

AND

APPENDIX A-G

Submitted to:

Alcoa Davenport Riverdale, Iowa

February 1990

Submitted to:

35858

Dublin, Ohio

232

Figure 1. Location and Physical Setting of the Alcoa-Davenport Plant.

Figure 2. Topographic Map of the Waste Site Illustrating the Areal Extent of the Clay Cap, Clay Cores, and the Oil-Interception Trench. The Locations of the Collection Wells, Monitor Wells, and Subsurface Borings are Included on the Map.

- ALCOA PROCESS-WATER WELL
- BEDROCK MONITOR WELL CLUSTER

Figure 3. Location of Existing Bedrock Monitor Well Clusters and Plant Process-Water Wells at the Alcoa-Davenport Plant.

- . GM-I6 Monitor Well
- .8 Collection Well
- . GM-I7R Replacement Well, Installed April, 1989

Figure 4. Configuration of Existing Collection Wells and Monitor Wells at the Alcoa Waste Site.

Figure 5. Hydrogeologic Map Indicating the Bedrock Aquifers and Confining Beds that Comprise the Bedrock Surface in East-Central Iowa.

	Hydrologic Unit	General thickness in feet	Age of rocks	Name of rock units	Type of rock
*	Surficial aquifers alluvial buried-channel drift	0 to 400	Quaternary (0 to 1 million years old)	Quaternary deposits undifferentiated	Sand, gravel, silt and clay Sand, gravel, silt and clay Till (sandy, pebbly clay) sand, silt
*	Pennsylvanian rocks princiaplly confining beds; locally contains waterbearing sandstone	0 to 70	Pennsylvanian (280 to 310 million years old)	Pennsylvanian rocks, undifferentiated	Shale, sandstone, limestone, and coal
	Mississippiran aquifer	0 to 220	Mississippian (310 to 345 million years old)	Moramecian Series Osagean Series Kinerhooklan Series	Limestone and sandstone Dolomite, limestone, and shale Limestone, dolomite, and siltstone
	Devonian confining beds	0 to 350	Devonian (345 to 400 million	Yellow Spring Group Lime Creek Shale	Shale, dolomite and siltstone Dolomite and shale
*	Devonian aquifer	0 to 400	years old)	Oedar CreekValley Limestone Wapsipinicon Limestone	Limestone and domolite Dolomite, limestone and shale
*	Silvrian aquifer	0 to 450	Silurian (400 to 425 million years old)	Cower Dalomite Hopkinton Dolomite Kankakee Linestone Edgewood Dolomite	Dolomite with some chert and limestome
*	Ordovician confining beds	300 to 600	Ordovician (425 to 500 million years old)	Maquoketa Shale Galena Dolomite Decorah Formation Platteville Formation	Dolomite and shale Dolomite and chert Limestone and shale Limestone and shale
	Cambrian- Ordovician aquifer	400 to 650		St. Peter Sandstone Prairie du Chien Formation Jordan Sandstone St. Lawrence Dolomite	Sandstone Dolomite, sandstone, and shale Sandstone Dolomite
	Cambrian confining beds	90 to 290	Cambrian (500 to 600 million years old)	Franconia Sandstone	Shale, siltstone, and sandstone
	Dresbach aquifer	157 to 1644		Dresbach Group Galesvills Bandstone Eau Claire Sandstone Mt. Simon Sandstone	Sandstone Sandstone, shale, and dolomite Sandstone
	Precambrian rocks		Precambrian (600 to more than 2 billion years old)	Crystalline rocks, undifferentiated	Sandstone, igneous and metamorphic rocks

From Wahl et al, 1978

- = Highlighted Units Represent Aquifers * = Indicates Units Identified Beneath Alcoa-Davenport Plant

FIGURE 7

STRATIGRAPHIC COLUMN OF GEOLOGIC UNITS WITHIN SCOTT COUNTY

	GROUP	SYSTEM	SERIES	STAGE	SUB-STAGE
			Recent	Alluvial	
I	Cenozoic	Pleistocene	Glacial	Iowan Sangamon Illinoian Yarmouth Kansan Aftonian Pre-Kansan	
				Residual Clays Geest	
		Carboniferous	Upper Carbon- iferous	Des Moines	
11	Paleozoic	Devonian	Middle Devon-	Cedar valley	Dielasma beds Spirifer Par- ryanus beds
	•		1411	Wapsipinicon	Upper Davenport Lower Davenport Independence Otis
	Silurian		Niagara	Gower	Anamosa Le Claire

After Norton, 1898

I Unconsolidated Sedimentary Horizons II Consolidated Sedimentary Rock Units

^{*} Denotes the Tippecanoe-Kaskaskia Unconformity (Anderson et al, 1982)

SYSTEM Custernary Tertiary &		SERIES AND MEGAGROUP Pleistocane		ı ı	GROUP AND HYDROSTRA FORMATION Aquigroup Undifferentiated		1		GRAPHIC UNITS	LOG	THICKNESS	DESCRIPTION
				╁			Pleistocene		7.7.7.	(h) 0 - 600	Unconsolidated glacial deposits - pebbly clay (till) silt, and gravel. Loess (windblown silt), and allu-	
						Prairie					vial silts, sands and gravels.	
Cretaceous		 		Ι,	Undifferentiated						0-100	Sand and silt.
lerous.	Pennsyl- vanian			,	Inditferentiated				Pennsylvanian		0 500	Mainly shale with thin sandstone, limestone and coal beds.
Carbonierous	Missimippian	Valmeyeran			St. Louis Ls Salem Ls Warsaw Ls Keokuk Ls)			St. Louis - Salem aquifer Keokuk -		0 - 600	Limestone, cherty limestone, green, brown and black shale, silty dolomite,
	Missing	Kinderhookian		U	Burlington Ls Indifferentiated		Velley		Burlington aquifer			-
 De	rvonian		-	Undifferentiated		Bedrock	Mississippi Velley	Devonian			0 - 400	Shale, calcareous; limestone beds, thin.
 s	กับก่อก	Niegeran		R.	ort Byron Fm acine Fm aukesha Ls oliet Ls	Upper (Silurian dolomita		/ <u>^</u> /	0 - 465	Dolomite, silty at base, locally cherty.
		Alexandrian		Kankakee Ls · Edgewood Ls		,		aquifer		^ /	-	
		Cincinnatian		1	Maquoketa Shale Group			Maquoketa confining unit		差生	0 – 250	Shale, gray or brown; locally dolomite and/or limestone, argillaceous.
		Mohawkian Si dh		Galena Group Decorah Subgroup Platteville Group			:	Galena-Platteville unit			0 - 450	Dolomite and/or limestone, cherty. Dolomite, shale partings, speckled. Dolomite and/or limestone, cherty, sandy at base.
Ord	Jovician	Charyan		Ancell Gr	Glenwood Fm St. Peter Ss		`. <u>\$</u>		Ancell squifer	=. <u>-</u> .	100 - 650	Sandstone, fine- and coarse-grained; little dolomite; shale at top. Sandstone, fine- to medium-grained; locally cherty red shale at base.
		Canadian	dnowed	Prairie du Chien Groun	Shakopee Dol New Rich- mond St Oneota Dol Gunter Ss			alining unit	Prairie du Chien -			Dolomite, sandy, cherty (politic), sandstone. Sandstone, interbedded with dolomite. Dolomite, white to pink, coarse-grained, cherty (politic), sandy at base.
			Knok Me	Jo Er	rdan Ss ninence Fm— nosi Dolomite			Middle oon	Eminence-Potosi	7.		Dolomite, white, fine-grained, geodic quartz, sandy at base.
				Fr	anconia Fm		•	3	Franconia			Dolomite, sandstone, and shale, glauconitic, green to red, micaceous.
C•~	nmbrian				Fronton Ss Galesville Ss				ronton-Galesville aquifer	· <u>/ · · ·</u>	0 - 270	Sandstone, fine- to medium-grained, well sorted, upper part dolomitic.
				Eau Claire Fm		frock		Eau Claire		ヹヹ	0 - 450 1	Shale and siltstone; dolomite, glauconitic; sandstone, dolomitic, glauconitic.
				t. Simon Fm		Bessi Bedrock		nhurst-Mt, Simon aquifer	:-:===================================	0 - 2600	Sandstone, coarse-grained, white, rad in lower half; lenses of shale and sittstone, red, micacook	
		Pre-Cambrian		_		C=::	stalling	-		S		No equifers in Illinois

Note: The rock-stratigraphic and hydrostratigraphic-unit classifications follow the usage of the Illinois State Geological Survey. Compiled by Visocky, Sherrill, & Contweight 1985

	<u>j</u>	Environmental Services				
DRILLING AND CASING CONDITIONS	WATER-YIELDING PROPERTIES	S CHEMICAL QUALITY OF WATER	WATER TEM- PERATURE OF			
Boulders, heaving sand locally; sand and gravel wells usually require screens and development; casing in wells into bedrock.	Sand and gravel, permeabic. Locally, wells yimuch as 3000 gpm. Specific causeities vary f about 0.1 to 5600 gpm/ft.	TDS generally between 400 and 600 mg/L. Hardness 300-400 mg/L. Iron generally 1-5 mg/L.	50 - 64			
Shale requires casing.	Extremely variable. Sandstone and limestone generally yield less than 10 gom.	TDS extremely variable regionally and with depth. North-central Illinois, 500-1500 mg/L; southern, 500-3000 mg/L, Hardness: 150-400 mg/L north; 150-1000 mg/L south, Iron generally 1-5 mg/L.	53 – 57			
· · · · · ·	In southern two-thirds of IL. yields generall than 25 gpm.	TDS ranges between 400 and 1000 mg/L. Hardness is generally between 200 and 400 mg/L. Iron: 0.3-1.0 mg/L.	.53 – 59			
Upper part thusly weathered and broken; previcing varies widely,	Yields inconsistent. Major aquiler in NE and I Illinois. Yields in fractured zones more than 1000 gpm.	NW TOS: 350-1000 mg/L; Hardness: 200-400 mg/L; Iron: 0.3-1.0 mg/L	52 - 54			
Shale requires casing.	Shales generally not water yielding. Crivices in dolomite units yield small local supplies.		· ,			
Crevicing commonly where formations underlie drift. Top of Galena usually selected for hole reduction and leating of casing.	Where overlain by shales, crevicing and well yie small. Where overlain by drift wells yield mode quantities of water.					
cover cherty shales cave and are usually cased, Friable sand may slough,	Small to moderate quantities of water, Trans- missivity approximately 15 percent of that of t Midwest Bedrock Aquigroup.		·			
revices encountered locally in the dolomite, especially in the Eminence—Potosi. Casing not required.	Crevices in dolomite and sandstone yield small to moderate quantities of water. Transmissivity approximately 35 percent of that of the Midwes Bedrock Aquigroup.	res trun 1.0 mg/L.	52 ~ 73			
amount of cementation variable. Lower part more riable. Sometimes sloughs.	Most productive unit of the Midwest Bedrock Aquigroup, Yields over 500 gom common in northern tilinois. Transmissivity approximately 50 percent of that of the Midwest Bedrock Aquigroup.					
asing not usually necessary. Locally weak shales vay require casing.	Shales generally not water yielding.					
ising not required.	Moderate quantities of water in upper units, Comparable in permeability to the Glenwood- St. Peter Sandstone,	Varies northwest to southeast and with depth, At shallower depths, TDS: 235-4000 mg/L, Hardness: 220-800 mg/L, Iron: 0.1-20 mg/L. High chloride concentrations with depth,	51 - 62 in the north 80 or more in the south			

SYSTEM	SERILS	GROUPS	FORMATIONS	MEMBERS	GRAPHIC LOG	THICKNESS (FT)	DESCRIPTION
Quaternary	Pleistocene					U-20	Unconsolidated glacial deposits; loess glacial till, silt/ clay, sand and gravel
Pennsylvanian	Des Moines	Cherokee				0-15	Dark gray-green carbonaceous shale
	ə		uo	Kenwood	77//	5-15	Thin bedded limestone, dolomite and shale, chert, brown in color, evaporites
Devonian	Middle		Wapsipinicon	ottis		15-30	Very fine grained, light gray to buff, crystaline limestone, trace dolomite units
	Alexandrian	Hunton Mega Group	Gower	LeClaire			White to gray, crystaline dolomite, abundant cavities, poorly bedded, contains fossifereous nound structures
				Anamosa			Light buff, grainular dolomite, evenly bedded -
Silurian			Hopkinton			225-260	Light gray to pale yellow gray, fine- medium dolomite, porous, vuggy in places
-			Kankakee			80-90	White to tan, crystaline dolomite with chert, shale occuring locally
	Ak		Edgewood			7-10	Light gray, cherty dolomite, argillaceous
Ordovician	Cincimatian	Maquoketa Shale Group	Brainard Shale			75-100	Silty, dolomite, weak greenish-gray shale interbedded with varying amounts of greenish-gray dolomite

Figure 9. Stratigraphic Section of the Sedimentary Formations Recorded Beneath the Alcoa-Davenport Plant.

Figure 10. Areal Extent of Alluvial Aquifers in East-Central Iowa.

Figure 11. Areal Extent of Drift and Buried-Channel Aquifers in East-Central Iowa.

Figure 12. General Locations of Ground-Water Wells Within Approximately a One Mile Radius of the Alcoa-Davenport Waste Site.

Figure 13. Approximate Location and Extent of the Flood Plain of the Mississippi River.

Figure 14. North-South Cross Section A-A' Along the Eastern Portion of the Alcoa-Davenport Waste Site.

Figure 15. North-South Cross Section B-B' Along the Western Portion of the Alcoa-Davenport Waste Site.

Figure 16. Northwest-Southeast Cross Section C-C' Through the Center of the Alcoa-Davenport Waste Site.

Figure 17. East-West Cross Section D-D' Along the Southern Half of the Alcoa-Davenport Waste Site.

Figure 18. Cross Section I-I' of the Northeast Corner of the Oil-Interception Trench at the Alcoa-Davenport Waste Site.

Figure 19. Cross Section II-II' of the Southeast Portion of the Oil-Interception Trench at the Alcoa-Davenport Waste Site.

Figure 20. Cross Section III-III' of the Southern Portion of the Oil-Interception Trench at the Alcoa-Davenport Waste Site.

Figure 21. Cross Section IV-IV' of the Western Corner of the Oil-Interception Trench at the Alcoa-Davenport Waste Site.

Figure 22. Map Illustrating the Locations of the Cross Section Transects.

573.87 Fluid Level Elevation, in feet MSL

Ground Water Flow Direction

-573 - Ground Water Contour

Figure 23. Ground-Water Contour Map Depicting Flow Conditions at the Alcoa-Davenport Waste Site During April, 1988.

Figure 24. Hydrograph Depicting Annual Fluid-Level Fluctuations for CM-4, GM-8D, GM-22, AS and the Mississippi River for 1987.

Figure 25. Hydrograph Depicting Annual Fluid-Level Fluctuations for CNi-5, GN-6, GM-21 and the Mississippi River for 1987.

Figure 26. Hydrograph Depicting Annual Mean Fluid-Level Fluctuations for the Alcoa Waste Site and the Mississippi River During 1987.

Figure 27. Hydrograph Depicting Annual Mean Fluid-Level Fluctuations for the Alcoa Waste Site and the Mississippi River During 1988.

Figure 28. Ground-Water Contour Map Depicting Flow Conditions in the Bedrock Aquifer During April, 1988.

ALCOA PROCESS-WATER WELL

BEDROCK MONITOR WELL CLUSTER 554.77 Fluid Level Elevation, in feet MSL

► GROUND WATER FLOW DIRECTION -570- GROUND WATER CONTOUR

Figure 29. Ground-Water Contour Map Depicting Flow Conditions in the Bedrock Aquifer During June, 1988.

- ALCOA PROCESS-WATER WELL
- BEDROCK MONITOR WELL CLUSTER
- -560- GROUND WATER CONTOUR
 - GROUND WATER FLOW DIRECTION

Figure 30. Ground-Water Contour Map Depicting Flow Conditions in the Bedrock Aquifer During November, 1988.

Figure 31. Hydrograph Depicting Annual Water-Level Fluctuations in Selected Bedrock Monitor Wells.

- ALCOA PROCESS-WATER WELL
- BEDROCK MONITOR WELL CLUSTER
- -560- GROUND WATER CONTOUR
 - GROUND WATER FLOW DIRECTION

Figure 32. Ground-Water Contour Map Depicting Flow Conditions in the Bedrock Aquifer During December, 1988.

ALCOA PROCESS-WATER WELL

GROUND-WATER FLOW DIRECTION

BEDROCK MONITOR WELL CLUSTER

GROUND-WATER CONTOUR

(525.44) Water-Level Elevation, feet MSL, in the deep well for each monitor well cluster.

Figure 33. Ground-Water Contour Map Depicting Flow Conditions in the Bedrock Aquifer During March, 1989.

- GM-I6 Monitor Well
- .8 Collection Well
- . GM-I7R Replacement Well, Installed April, 1989
- Approximate Location of former Well PW-1.
- Approximate Location of the former N Drain.

Figure 34. Approximate Locations of the Former Well PW-1 and the N-Drain at the Alcoa-Davenport Waste Site.

BACKGROUND WELL TO COMPLIANCE WELL COMPARISONS

FIGURE 35. BACKGROUND WELL TO COMPLIANCE WELL COMPARISONS, FROM EPA PB89-151047, FEB 89

CLUSTER A: TOTAL VOC CONCENTRATION (ppb)

Intermediate and Deep

Date of Measurement

Figure 36. Time Versus Concentration Plot for Total VOCs in Bedrock Well Cluster A.

CLUSTER B: TOTAL VOC CONCENTRATION (ppb)

Intermediate and Deep

Figure 37. Time Versus Concentration Plot for Total VOCs in Bedrock Well Cluster B.

CLUSTER C: TOTAL VOC CONCENTRATION (ppb)

Intermediate and Deep

Date of Measurement

Figure 38. Time Versus Concentrations Plot for Total VOCs in Bedrock Well Cluster C.

CLUSTER D: TOTAL VOC CONCENTRATION (DDb)

Figure 39. Time Versus Concentration Plot for Total VOCs in Bedrock Well Cluster D.

CLUSTER E: TOTAL VOC CONCENTRATION (ppb)

Date of Measurement

Figure 40. Time Versus Concentration Plot for Total VOCs in Bedrock Well Clsuter E.

CLUSTER F: TOTAL VOC CONCENTRATION (ppb)

Shallow, Intermediate, and Deep

Date of Measurement

Figure 41. Time Versus Concentration Plot for Total VOCs in Bedrock Well Cluster F.

Figure 42. Regression Analysis Plot of Total VOC Data for Bedrock Well DI.

Figure 43. Surface Water Sampling Locations in the Mississippi River.

EXPLANATION

- . GM-i6 Monitor Well
- .8 Collection Well
- GM-17R Replacement Well, Installed April, 1989

Figure 44. Subdivision of the Alcoa-Davenport Waste Site into Elements for Computation of Vertical Ground-Water Flux Component.

EXPLANATION

- . GM-I6 Monitor Well
- .B Collection Well
- . GM-I7R Replacement Well, Installed April, 1989

Figure 45. Location of the Four Curvilinear Elements of the HDPE Liner Used to Estimate the Horizontal Components of Ground-Water Flux at the Alcoa-Davenport Waste Site.

HYDRAULIC GRADIENTS ACROSS THE HDPE LINER, 1987

HYDRAULIC GRADIENTS ACROSS THE HDPE LINER, 1988

Figure 48. Flow Net Depicting Ground-Water Flow Conditions Beneath the HDPE Liner at the Alcoa-Davenport Waste Site.

Figure 49. Location of Bedrock Cross-Section transect E-E' at the Alcoa-Davenport Plant.

Figure 50. Approximate Areal Configuration of Portion of Bedrock Aquifer Downgradient from the Alcoa-Davenport Waste Site.

Figure 51
Ground-Water Flux from the Bedrock Aquifer to the Mississippi River for the Aloca-Davenport Site During 1987 and 1989

EXPLANATION

- ALCOA PROCESS-WATER WELL
- BEDROCK MONITOR WELL CLUSTER

Figure 52. Water Reclamation Facility Site Map at the Alcoa-Davenport Plant.

Figure 53. Configuration of the Cross-Sectional Area of the Mississippi River Within the Estimated Ground-Water Discharge Zone for the Alcoa-Davenport Waste Site.

Figure 54. Estimated Configuration of the Discharge Zone in the Mississippi River for Ground-Water Seepage from the Alcoa-Davenport Waste Site.

School Receptor and Ten Receptors at Plant Fenceline

Alcoa-Davenport Works - ISCLT Modeling

 Δ Symbol Represents School Receptor

TABLE 1. DESCRIPTION OF K*' ON GROND-WATER WELLS LOCATED WITHIN APPROXIMATELY A ONE MILE RAL S OF THE ALCOA-DAVENPORT WASTE SITE.

Designation From Fig. 13	 Well Name/Owner	 Address	 Well Use	 Well Depth	*Well Log Available:
Α .	Lowell Well	210 S. Bellingham	Drinking Water	Not Knwon (Probably Shallow Bedrock Well <100 feet)	No
В	Hargis Well	232 S. Bellingham	Drinking Water	Same as Above	No No
С	Horsey Well	125 Kensington	Drinking Water	Same as Above	No
D	Showalter Well	123 Sycamore	Drinking Water	Same as Above	No
E	Dahms Well	127 Witeria	Drinking Water	Same as Above	No No
F .	Thomas Well	Listed in Quadrant Format on Well Log	Not Known (Probably Drinking/ Process Water)	95 feet 	Yes
G	Kelly Cottage Well (Alcoa)	Unnamed Road Off of Bellingham Street	Drinking Water	Approx. 125 feet	No
Н	Chrissey Well	Just North of Route 67 Across from Alcoa 	Drinking Water	Not Known (Probably Shallow Bedrock Well <100 feet)	No
PW-1 through PW-6	Alcoa Davenport Plant 	 Highway 67 East 	Process Water (Cooling)	400 to 415 feet 	Yes
7	Meadows Transfer Company 	Bellingham Street	Not Known (Processing, Possibly Potable Water Source)	250 feet 	Yes
8	 Iowana Dairy Company 	 Listed in Quadrant Format on Well Log 	Not Known (Suspected Use is for Processing, Possibly Potable)	387 feet 	Yes

TABLE 1. (CONTINUED) DESCRIPTION 5 KNOWN GROND-WATER WELLS LOCATED WITHIN APPROXIMATELY A ONE MILE RAL___S OF THE ALCOA-DAVENPORT WASTE SITE.

Designation From Fig. 13	 Well Name/Owner	 Address	Well Use	 Well Depth	*Well Log Available?
9	Case Harvester International	1100 Third Street	Non-Contact Cooling	400 feet	Yes
10	Foremost Packing Company	1164 13th Avenue	Not Used	104 feet	No
11	Foremost Packing Company	1164 13th Avenue	Processing and Drinking Water Source	260 feet 	Yes

Note:

^{*} Available Well Logs Provided in Appendix C.

TABLE 2

SUMMARY OF AUGUST 1982 PRIORITY POLLUTANT ANALYTICAL RESULTS OF SAMPLES COLLECTED FROM THE N-DRAIN AND PW-1 AT THE ALCOA-DAVENPORT WASTE SITE

COMPOUNDS	Concentrations, ug/L		COMPOUNDS	Concentrations mg/L			
VOLATILE ORGANICS	PW-1	N-Drain	SWDA/RCRA PESTICIDES	PW-1	N-Drain		
1,2-Dichloroethene Vinyl Chloride 1,1 Dichloroethene	85 10 	13,000 230 36	AND HERBICIDES	No Compounds present above lab detection limits			
ACID EXTRACTABLE ORGANICS 2,4 Dimethylphenol Phenol	90 84	 	RCRA METALS Barium Chromium Lead	0.18	1.0 0.14 0.20		
BASE NEUTRAL EXTRACTABLE ORGANICS		ds present above ection limits	INORGANIC PRIORITY POLLUTANTS AND NUTRIENT CONCENTRATIONS Cyanide, Total Phenols, Total COD TOC	.01 .61 41.80 406.00	.01 .08 42.70 287.00		

TABLE 3 PCB ANALYTICAL RESULTS SUMMARY TABLE FOR VARIOUS MEDIA AT THE ALCOA-DAVENPORT WASTE SITE

MEDIUM	ALL CONCENTRATIONS	REPORTED IN PPM (mg/l)	Mean Concentration	Standard Deviation
	Lowest Reported Concentration	Maximum Detected Concentration		
Oil Phase	0.003	15,000	6049.1	2101.5
Sediment Phase	ND	6,620	361.7	7121.2
Water Phase	ND	18	2.261	3.4
Water Phase ² Dissolved PCB Solubility Range	0.018	0.054		

NOTES:

ND = Indicates Nondetection

- 1 = Mean PCB Concentrations for the Oil Phase Determined Utilizing Analytical Results
 from GM-6 Only. (Most Complete Set of Data, Provides Worst Case Concentrations).
 Mean PCB Concentrations for the Sediment Phase Determined Utilizing Analytical Results
 from GM-7 Only. (Most Complete Set of Data, Provides Worst Case Concentrations).
 Mean PCB Concentrations for the Water Phase Determined Utilizing Analytical Results
 from GM-6 Only. (Most Complete Set of Data, Provides Worst Case Concentrations).
- ² = Represents the Maximum Concentration Range for Dissolved PCBs (Aroclor 1248) in Water .018 ppm Value Determined in Site-Specific Solubility Study Using Oil and Water from Waste Site (Alcoa Technical Lab, 1988).
 .054 ppm Represents 1979 Literature Value Recognized by the EPA (EPA-44014-79-0296).

TABLE 4
SUMMARY OF VOLATILE ORGANIC COMPOUNDS CONCENTRATIONS
IN GROUND-WATER SAMPLES COLLECTED FROM SELECTED
MONITOR WELLS AT THE ALCOA WASTE SITE

VOC CONSTITUENTS	DETEC -TION LIMIT	OCTOBER	APRIL	987 OCTOBER	19 MAY	988 OCTOBER	1989 ⁴ APRIL	AUGUST ⁵	OCTOBER ¹⁰ MEAN ⁹
GM-4									
Vinyl Chloride 1,2-Dichloroethene	10							NS I	3.4
(total)	10								3.4
1,1-Dichloroethene	10							[]	3.4—
1,1-Dichloroethane	10								3.4
Chloroethane	10								3.4 3.4
Trichloroethene	10								3.4
1,1,1—Trichloroethane Toluene	10 10								3.4 3.4
Cumulative VOCs	10	ND	ND	ND	ND	ND	ND	NS	ND .
Canalactive vocs		ND	ND	ND	ND	ND	ND		ND
·									
GM-6			:						•
Vinyl Chloride	10					ŅS	1.0	ŅS	3.4
1,2-Dichloroethene						İ			
(total)	10	(6.0)	(9.0)	13.0	10	Ì	10	}	9.6
1,1-Dichloroethene	10					(77.7)			3.3
1,1-Dichloroethane Chloroethane	10 10					(IW)			3.3 3.3
Trichloroethene	10								3.3—
1,1,1-Trichloroethane	-								3.3
Toluene	10	(5.0)					1.0		3.6
Cumulative VOCs		11.0 ¹	9.0^{1}	13.0	10	NS	12	NS	11.0
			1					ì	

SUMMARY OF VOLATILE ORGANIC COMPOUNDS CONCENTRATIONS IN GROUND-WATER SAMPLES COLLECTED FROM SELECTED MONITOR WELLS AT THE ALCOA WASTE SITE

VOC CONSTITUENTS	DETEC	· ·		987	_	988	1989 ⁶ APRIL	 	OCTOBER ¹⁰ MEAN ⁹
CONSTITUENTS	LIMIT	OCTOBER	APRIL	OCTOBER	MAY	OCTOBER	APRIL	AUGUST	OCTOBER MEAN
GM-10									
Vinyl Chloride 1,2-Dichloroethene	10	30 -	18	(6)	20	NS 		NS 	14.9
(total)	10	120	53	11	46				46.1
1,1-Dichloroethene 1,1-Dichloroethane	10 10					(IW)		[[3.3 3.3
Chloroethane	10			(5)	(6)	(147)			3.5 3.4
Trichloroethene	10	(5)						[3.5
1,1,1-Trichloroethane	11					l]	3.3
Toluene	10	2551			 1) V2			3.3
Cumulative VOCs		155 ¹	71	221	721	NS 		NS	64.0
GM-12		!							
Vinyl Chloride	10	19		67	40		190	NS	54.0
1,2-Dichloroethene	10	40		150		(4)	570		140.0
(total) 1,1-Dichloroethene	10 10	40		150	77 	(4)	570 1.0		140.8 3.5
1,1-Dichloroethane	10						1.0		3.5
Chloroethane	10								3.4 3.5
Trichloroethene	10								3.4—
1,1,1-Trichloroethane									3.4
Toluene Cumulative VOCs	10	(7) 66 ¹		(7) 224 ¹	117	10 14 ¹	4 766	NS	6.0 197.8
conditative vocs		00		224	11/	7.4	700	115	137.0

SUMMARY OF VOLATILE ORGANIC COMPOUNDS CONCENTRATIONS IN GROUND-WATER SAMPLES COLLECTED FROM SELECTED MONITOR WELLS AT THE ALCOA WASTE SITE

VOC CONSTITUENTS	DETEC -TION LIMIT	1986 OCTOBER	19 APRIL	087 OCTOBER	19 MAY	988 OCTOBER	1989 ⁴ APRIL	AUGUST C	OCTOBER10	mean ⁹
AS Vinyl Chloride	10							NS	······	3.4
1,2-Dichloroethlene (total) 1,1-Dichloroethlene 1,1-Dichloroethlane Chloroethane Trichloroethene 1,1,1-Trichloroethane Toluene Cumulative VOCs	10 10 10 10 10	43 43		10 10		42 42	70	NS		28.8 3.4 3.4 3.4 3.4 3.4 3.4 27.5
GM-17		! 				=======================================				
Vinyl Chloride 1,2-Dichloroethlene (total) 1,1-Dichloroethene 1,1-Dichloroethane Chloroethane Trichloroethlene 1,1,1-Trichloroethane Toluene Cumulative VOCs*	10 10 10 10 10 10 10	NS 	NS 	NS 	NS 	NS 	NS 	10.0 77.0 22.0 16.0 5.0 4.0 136	ns 	

SUMMARY OF VOLATILE ORGANIC COMPOUNDS CONCENTRATIONS IN GROUND-WATER SAMPLES COLLECTED FROM SELECTED MONITOR WELLS AT THE ALCOA WASTE SITE

VOC CONSTITUENTS PW-1	DETEC -TION LIMIT		1986	APRIL	987 OCTOBER	MAY	988 OCTOBER	1989 ⁴ APRIL	AUGUST	october ¹⁰	mean ⁹	
Vinyl Chloride 1,2-Dichloroethene (total) 1,1-Dichloroethene 1,1-Dichloroethane Chloroethane Trichloroethene 1,1,1-Trichloroethane Toluene Cumulative VOCs	10 10 10 10 10 10 10	10 85 95	NS 	NS 	ns 	NS NS	NS NS	NS 	ns 	NS 		
N-DRAIN Vinyl Chloride 1,2-Dichloroethene (total) 1,1-Dichloroethene 1.1-Dichloroethane Chloroethane Trichloroethene 1,1,1-Trichloroethane Toluene Cumulative VOCs		230 13,000 36 13,266	NS 	NS 	NS 	NS NS	NS 	NS 	NS NS	NS NS		

TABLE 4 (CONTINUED) SUMMARY OF VOLATILE ORGANIC COMPOUNDS CONCENTRATIONS IN GROUND-WATER SAMPLES COLLECTED FROM SELECTED MONITOR WELLS AT THE ALCOA WASTE SITE

NOTES:

- 1. All Concentrations Reported In ppb.
- 2. --- Indicates That The Compound Was Not Detected Above Laboratory Detection Limits.
- 3. IW Indicates That Insufficient Water Was Present For Sampling.
- 4. Detection Limit Decreased By A Factor Of 10 For Wells GM-4, GM-6, GM-10 and GM-12 During April 1989 Only.
- 5. Detection Limit Decreased by a factor of 4 for well GM-17 during August 1989 only.
- 6. (5) Concentration Estimated by the Laboratory Since the Concentration is Less Than the Detection Limit but Equal to or Greater than 1/2 that Limit.
- 7. 155¹ Cumulative VOC Concentration Consists Partially or Entirely of Compounds whose Concentrations were Estimated by the lab (see Note 6).
- 8. Methylene Chloride Concentrations Excluded from Table because it is a Probable Lab Contaminant (Present in Numerous QA/QC Blanks).
- 9. Mean Values Calculated Using the Following Specifications:
 - 4.0 ug/L was substituted for Nondetection where Detection Limit is 10 ug/L;
 - 1.0 ug/L was substituted for Nondetection where Detection Limit is 2.5 ug/L;
 - 0.5 ug/L was substituted for Nondetection where Detection Limit is 1.0 ug/L; and

Cumulative VOC Concentrations Calculated Using Individual Compound Concentrations Measured Above Lab Detection Limits Only (No Values Substituted for Nondetection) Mean Values Bracketed for Other VOCs

10.October Sampling Results not Included in Report.

TABLE 5.

RESULTS OF GROUND-WATER QUALITY ANALYSES OF SAMPLES FROM BEDROCK WELLS AT THE ALCOA-DAVENPORT PLANT.

THESE RESULTS REPRESENT THE CONCENTRATIONS OF ONLY THOSE PRIORITY POLLUTANT COMPOUNDS THAT EXCEEDED

THE DETECTION LIMITS; ALL OTHER COMPOUNDS WERE BELOW DETECTION LEVELS.

				Monitor Well			
Chemical Compound	AS* 3/85 12/85	AI 3/85 12/85	AD 3/85 12/85	BI 3/85 12/85	BD 3/85 12/85	CI 3/85 12/85	CD 3/85 12/85
Volatile Organics (ug/l)							
Vinyl chloride		19 53					
Methylene Chloride		12				10	
Trans-1,2,- Dichloroethylene		340 460		12 23	12		
Toluene		•	41				
Phenols (mg/l)	.042	.019		.049		.059	.012
Base-Neutral Extractables	(ug/1)						
Benzo (A) Anthracene		11	12			11	
Chrysene		11	12			11	
Bis(2-ethylhexyl) Phthalate					10		11

Notes:

SUMMARY TABLE OF ANALYTICAL DATA FOR
WATER SAMPLES COLLECTED FROM THE BEDROCK AQUIFER WELLS
AT THE ALCOA-DAVENPORT PLANT

TABLE 6

VOLATILE ORGANIC	DETECTION LIMIT	19	985	1986	19	987	198	88		1989	
COMPOUNDS	(ug/1)	MARCH	DEC.	OCT.	APRIL	OCT.	MAY	OCT.	FEB.	APRIL	OCT.
WELL AI											
Vinyl Chloride	10	19	53	19	45		49	NS	NS		
1,2-Dichloroethene (total) ³	10	340	460	150	65	55	37				
1,1-Dichloroethane	10	340	400	130	03	55	31				
Trichloroethene	10										
Tetrachloroethene	10										
1,1,1-Trichloroethane	10		1				Ì		1		
Toluene	10										
Benzene	10										
Ethylbenzene	10										
CUMULATIVE VOCs	<u> </u>	359	513	169	110	55	86	NS	NS		
WELL AD											
Vinyl Chloride	10								NS		}
1,2-Dichloroethene											
(total)	10			1							
1,1-Dichloroethane	10] }
Trichloroethene	10		1					l			
Tetrachloroethene	10									•	
1,1,1-Trichloroethane Toluene	10 10		41								
Benzene	10		41	7E							
Ethylbenzene	10			. /15						:	
CUMULATIVE VOCS	10		41	7					NS		

TALLE 6 (CONTINUED)

SUMMARY TABLE OF ANALYTICAL DATA FOR WATER SAMPLES COLLECTED FROM THE BEDROCK AQUIFER WELLS AT THE ALCOA-DAVENPORT PLANT

	DIMENSTRATION			3006						1000	
VOLATILE ORGANIC	DETECTION LIMIT	19	985	1986	19	987	19	88		1989	
COMPOUNDS	(ug/l)	MARCH	DEC.	OCT.	APRIL	OCT.	МАУ	OCT.	FEB.	APRIL	OCT.
WELL BI											•
Vinyl Chloride	10							16	NS	75	
1,2-Dichloroethene		}		1]] }				
(total)	10	12	23					6E		29	
1,1-Dichloroethane	10	(<u> </u>			i i			6	
Trichloroethene	10									2	
Tetrachloroethene	10										,
1,1,1-Trichloroethane	10	:		<u>}</u>							
Toluene	10			[]							
Benzene	10	ļ .								2	
Ethylbenzene	10	_	_	1							
CUMULATIVE VOCS		12	23	ND	ND	ND	ND	22	NS	114	
WELL BD											
Vinyl Chloride	10	1		5					NS		
1,2-Dichloroethene				[
(total)	10	12		41	12	6E	8E	10]	10	,
1,1-Dichloroethane	10						}				
Trichloroethene	10										
Tetrachloroethene	10										
1,1,1-Trichloroethane	10										
Toluene	10	ļ .						ļ			
Benzene	10										
Ethylbenzene	10										,
CUMULATIVE VOCS	ļ	12	ND	46	12	6	8	10	NS	10	

TABLE 6 (CONTINUED)

SUMMARY TABLE OF ANALYTICAL DATA FOR WATER SAMPLES COLLECTED FROM THE BEDROCK AQUIFER WELLS AT THE ALCOA-DAVENPORT PLANT

WOLVELLE ODGIVIC	DETECTION	19	985	1986	19	987	198	88		1989	 _
VOLATILE ORGANIC COMPOUNDS	LIMIT (ug/l)	MARCH	DEC.	OCT.	APRIL	OCT.	MAY	OCT.	FEB.	APRIL	OCT.
WEIL CI Vinyl Chloride 1,2-Dichloroethene	10								NS 		
(total)	10	}			[]						
1,1-Dichloroethane Trichloroethene	10 10							1			
Tetrachloroethene	10										
1,1,1-Trichloroethane	10					·	l I				,
Toluene	10		•	}							
Benzene	10						l I				
Ethylbenzene CUMULATIVE VOCs	10								 NS		
LIDIT CD											-
WELL CD Vinyl Chloride	10								NS		
1,2-Dichloroethene	10						1				
(total)	10										
1,1-Dichloroethane	10				. 1						
Trichloroethene	10										
Tetrachloroethene	10										
1,1,1-Trichloroethane Toluene	10]		}				
Benzene	10 10							٠.			
Ethylbenzene	10	1									
CUMULATIVE VOCS									NS		

TALLE 6 (CONTINUED)

SUMMARY TABLE OF ANALYTICAL DATA FOR WATER SAMPLES COLLECTED FROM THE BEDROCK AQUIFER WELLS AT THE ALCOA-DAVENPORT PLANT

NOT MELLE ODGINE	DETECTION LIMIT	1985		1986	1987		1988		1989		
VOLATILE ORGANIC COMPOUNDS	(ug/l)	MARCH	DEC.	OCT.	APRIL	OCT.	MAY	OCT.	FEB.	APRIL	OCT.
WEIL DS ¹ Vinyl Chloride 1,2-Dichloroethene	10	NS 	NS 	5E				₉ E	NS		
(total) 1,1-Dichloroethane Trichloroethene	10 10 10			25	24 6 ^E		10	94			
Tetrachloroethene 1,1,1-Trichloroethane	10 10										
Toluene Benzene Ethylbenzene	10 10 10										٠
CUMULATIVE VOCs		NS	NS	5	30		10	₉ E	NS		
WEIL DI ¹ Vinyl Chloride 1,2-Dichloroethene	10	NS 	NS 	140	220	70	34	22	NS 	300	
(total) 1,1-Dichloroethane Trichloroethene	10 10 10			410 79	480 92	53 45	35 80	16 52		530 76	
Tetrachloroethene 1,1,1-Trichloroethane Toluene	10 10 10									6 ^E	
Benzene Ethylbenzene	10 10	l l		(20	700	160	140	00	NG	012	
CUMULATIVE VOCs		NS	NS	629	792	168	149	90	NS	912	·

TABLE 6 (CONTINUED)

SUMMARY TABLE OF ANALYTICAL DATA FOR WATER SAMPLES COLLECTED FROM THE BEDROCK AQUIFER WELLS AT THE ALCOA-DAVENPORT PLANT

VOLATILE ORGANIC	DETECTION	19	985	1986	19	987	198	88		1989	
COMPOUNDS	LIMIT (ug/l)	MARCH	DEC.	OCT.	APRIL	OCT.	MAY	OCT.	FEB.	APRIL	OCT.
WELL DD1											
Vinyl Chloride	10	NS	NS	59	31	22	11	100	NS	220	
1,2-Dichloroethene	10		. .		00		4.0	200		400	
(total) 1,1-Dichloroethane	10 10	1 1 1		23 43	82 32	46 29	43 53	180 39		480 38	
Trichloroethene	10			4,3	32	29	23	39		36	
Tetrachloroethene	10	[[
1,1,1-Trichloroethane	10										
Toluene	10		ļ								,
Benzene	10		· }								
Ethylbenzene	10		1								
CUMULATIVE VOCs		NS	NS	125	145	97	107	319	NS	738	,
WELL ES ²											
Vinyl Chloride	10	NS	NS	NS	NS	NS	NS	NS			
1,2-Dichloroethene		1 1	1				1 1	1 1		,	
(total)	10										
1,1-Dichloroethane	10	l			1 1 1		<u> </u>				
Trichloroethene	10						1 1				
Tetrachloroethene	10										
1,1,1-Trichloroethane	10										
Toluene Benzene	10 10										
Ethylbenzene	10										
CUMULATIVE VOCs	10	NS	ns	NS	NS	NS	NS	NS			

Trank 6 (CONTINUED)

SUMMARY TABLE OF ANALYTICAL DATA FOR WATER SAMPLES COLLECTED FROM THE BEDROCK AQUIFER WELLS AT THE ALCOA-DAVENPORT PLANT

VOLATILE ORGANIC	DETECTION	19	985	1986	19	987	19	38		1989	
COMPOUNDS	LIMIT (ug/l)	MARCH	DEC.	OCT.	APRIL	OCT.	MAY	OCT.	FEB.	APRIL	OCT.
WEIL EI ² Vinyl Chloride 1,2-Dichloroethene (total) 1,1-Dichloroethane Trichloroethene Tetrachloroethene 1,1,1-Trichloroethane Toluene Benzene Ethylbenzene CUMULATIVE VOCs	10 10 10 10 10 10 10 10	NS 	NS 	NS 	NS 	NS 	NS 	NS 	12 1370 1382	18 1500 11 1529	,
WELL ED ² Vinyl Chloride 1,2-Dichloroethene (total) 1,1-Dichloroethane Trichloroethene Tetrachloroethene 1,1,1-Trichloroethane Toluene Benzene Ethylbenzene CUMULATIVE VOCs	10 10 10 10 10 10 10	NS 	NS 	NS 	NS 	NS 	NS 	NS NS			

TALLE 6 (CONTINUED)

SUMMARY TABLE OF ANALYTICAL DATA FOR WATER SAMPLES COLLECTED FROM THE BEDROCK AQUIFER WELLS AT THE ALCOA-DAVENPORT PLANT

	DETECTION	10	985	1986	10	987	19	99		1989	
VOLATILE ORGANIC	LIMIT	1.3		1200			1.			1707	
COMPOUNDS	(ug/1)	MARCH	DEC.	OCT.	APRIL	OCT.	MAY	ост.	FEB.	APRIL	OCT.
WELL FS ² Vinyl Chloride 1,2-Dichloroethene (total) ³ 1,1-Dichloroethane Trichloroethene Tetrachloroethene 1,1,1-Trichloroethane Toluene Benzene Ethylbenzene CUMUALITIVE VOCs	10 10 10 10 10 10 10	NS 	NS 	NS 	NS 	NS 	NS 	NS 			. ,
					1,5	110					-
WELL FI ² Vinyl Chloride 1,2-Dichloroethene (total) ³ 1,1-Dichloroethane Trichloroethene Tetrachloroethene 1,1,1-Trichloroethane Toluene Benzene Ethylbenzene CUMULATIVE VOCs	10 10 10 10 10 10 10	NS 	NS 	NS 	NS 	NS 	NS 	NS 			

I.' 5 6 (CONTINUED)

SUMMARY TABLE OF ANALYTICAL DATA FOR WATER SAMPLES COLLECTED FROM THE BEDROCK AQUIFER WELLS AT THE ALCOA-DAVENPORT PLANT

VOLATILE ORGANIC	DETECTION LIMIT	19	985	1986	19	987	198	88		1989	
COMPOUNDS	(ug/1)	MARCH	DEC.	OCT.	APRIL	OCT.	MAY	OCT.	FEB.	APRIL	OCT.
WELL FD ² Vinyl Chloride 1,2-Dichloroethene (total) ³ 1,1-Dichloroethane Trichloroethene Tetrachloroethene 1,1,1-Trichloroethane Toluene Benzene Ethylbenzene CUMULATIVE VOCs	10 10 10 10 10 10 10 10	NS 	NS 	NS 	NS 	NS 	NS 	NS 			·
WELL PW-6 Vinyl Chloride 1,2-Dichloroethene (total) 1,1-Dichloroethane Trichloroethene Tetrachloroethene 1,1,1-Trichloroethane Toluene Benzene Ethylbenzene CUMULATIVE VOCs	10 10 10 10 10 10 10 10	ns 	NS 	NS 	NS - - NS	NS 	27 84 11 13 7 ^E 12 147 ⁵	250 560 46 160 430 19 1035 ⁵	NS NS	210 550 48 420 540 16	·

NOTES:

Spaces left blank indicate non-detection, except for October 1989, for which time analytical results have not yet been compiled.

- 1 Wells installed in October 1986.
- 2 Well installed in January 1989.
- 3 Previously referred to as: trans 1,2 Dichloroethylene or cis 1,2 Dichloroethylene.
- 4 Detection limit for April, 1989 sampling event = 1.0 ppb.
- 5 Cumulative VOC concentrations do not include tetrachloroethene concentrations, since this compound is a non waste-site VOC.
- NS Not Sampled
- E Estimated concentration: Below laboratory detection limit.

TABLE 7
BEDROCK WELL CLUSTER A SUMMARY STATISTICS

Variable:	Intermediate	Deep
Sample size	7	8
Average	184.579	8.50625
Median	110	4
Mode	86	4
Geometric mean	50.2561	3.31813
Variance	34107.9	175.879
Standard deviation	184.683	13.2619
Standard error	69.8037	4.6888
Minimum	0.05	0.05
Maximum	513	41
Range	512.95	40.95
Lower quartile	55	4
Upper quartile	359	5.5
Interquartile range	304	1.5
Skewness	1.1444	2.71467
Standardized skewness	1.23609	3.13463
Kurtosis	0.266633	7.53579
Standardized kurtosis	0.143998	4.35079
Coefficient of variati	lon 1.0	1.56

TABLE 8
BEDROCK WELL CLUSTER B SUMMARY STATISTICS

Intermediate	Deep
8	8
23.375	13.5
8	10
4	12
10.7414	10.3051
1406.55	180.286
37.504	13.4271
13.2597	4.74718
4	4
114	46
110	42
4	7
22.5	12
18.5	5
2.57714	2.58012
2.97582	2.97927
6.89	7.0008
3.97794	4.04191
ion 1.60	0.99
	23.375 8 4 10.7414 1406.55 37.504 13.2597 4 114 110 4 22.5 18.5 2.57714 2.97582 6.89 3.97794

TABLE 9
BEDROCK WELL CLUSTER C SUMMARY STATISTICS

Variable:	Intermediate	Deep
Sample size	8	8
Average	3.50625	3.50625
Median	4	4
Mode	4	4
Geometric mean	2.31299	2.31299
Variance	1.95031	1.95031
Standard deviation	1.39654	1.39654
Standard error	0.49375	0.49375
Minimum	0.05	0.05
Maximum	4	4
Range	3.95	3.95
Lower quartile	4	4
Upper quartile	4	4
Interquartile range	0	0
Skewness	-2.82843	-2.82843
Standardized skewness	-3.26599	-3.26599
Kurtosis	8	8
Standardized kurtosis	4.6188	4.6188
Coefficient of variati	on 0.40	0.40

TABLE 10
BEDROCK WELL CLUSTER D SUMMARY STATISTICS

Variable:	Shallow	Intermediate	Deep
Sample size	6	6	6
Average	9.675	456.667	255.167
Median	7	398.5	135
Mode	4	149	107
Geometric mean	3.73159	317.457	188.096
Variance	112.074	132381	62650.6
Standard deviation	10.5865	363.843	250.301
Standard error	4.32192	148.538	102.185
Minimum	0.05	90	97.
Maximum	30	912	738
Range	29.95	822	641
Lower quartile	4	149	107
Upper quartile	10	792	319
Interquartile range	6	643	212
Skewness	1.82546	0.216474	1.95268
Standardized skewness	1.82546	0.216474	1.95268
Kurtosis	3.82343	-2.63549	3.72052
Standardized kurtosis	1.91171	-1.31775	1.86026
Coefficient of variati	on 1.09	0.80	0.98

TABLE 11
BEDROCK WELL CLUSTER E SUMMARY STATISTICS

Variable:	Shallow	Intermediate	Deep
Sample size	2	2	2
Average	2.025	1455.5	2.025
Median	2.025	1455.5	2.025
Mode	4	1529	4
Geometric mean	0.447214	1453.64	0.447214
Variance	7.80125	10804.5	7.80125
Standard deviation	2.79307	103.945	2.79307
Standard error	1.975	73.5	1.975
Minimum	0.05	. 1382	0.05
Maximum	4	1529	4
Range	3.95	147	3.95
Lower quartile	0.05	1382	0.05
Upper quartile	4	1529	4
Interquartile range	3.95	147	3.95
Skewness	0	0	0
Standardized skewness	0	o	0
Kurtosis	0	0	0
Standardized kurtosis	0	0	0
Coefficient of variation	on 1.38	0.07	1.38

TABLE 12
BEDROCK WELL CLUSTER F SUMMARY STATISTICS

Variable:	Shallow	Intermediate	Deep
Sample size	2	2	2
Average	2.025	2.025	2.025
Median	2.025	2.025	2.025
Mode	4	4	4
Geometric mean	0.447214	0.447214	0.447214
Variance	7.80125	7.80125	7.80125
Standard deviation	2.79307	2.79307	2.79307
Standard error	1.975	1.975	1.975
Minimum	0.05	0.05	0.05
Maximum	4	4	4
Range	3.95	3.95	3.95
Lower quartile	0.05	0.05	0.05
Upper quartile	4 .	4	4
Interquartile range	3.95	3.95	3.95
Skewness	0	0	0
Standardized skewness	0	0	0
Kurtosis	0	O	0
Standardized kurtosis	0	0	0
Coefficient of variation	n 1.37	1.37	1.37

TABLE 13
BEDROCK WELL DI REGRESSION ANALYSIS RESULTS DATA

	Regressi	on Anal	ysis -	Linear model	: Y = a+b	Х
Dependent vari	able: DWELL.in	termed		Indepe	ndent var	iable:
	(Total V	OC's)				
		Stan	dard	T		Prob.
Parameter	Estimate	Er	ror	Value		Level
Intercept	2207.97	07.97 7299		0.302472		.77737
Slope	-0.126134	0.52	5613	-0.239974		.82215
	· A	nalysis	of Va	riance		
Source	Sum of Squ	ares	Df I	Mean Square	F-Ratio	Prob. Level
Model	9394.	9394.1727		9394.1727	.058	.82215
Error	6525	13.16	4	163128.29		
Total (Corr.)	6619	07.33	5			

Correlation Coefficient = -0.119133 Stnd. Error of Est. = 403.891 R-squared = 1.42 percent

TABLE 14 SUMMARY TABLE

FOR ANALYTICAL RESULTS FROM MISSISSIPPI RIVER WATER SAMPLES, APRIL AND AUGUST, 1989

COMPOUNDS		=====		SAM	IPLE N	MBER					
VOCs - 624*	Detection <u>Limit</u>			MF	<u>MR−2</u>		<u>≀-3</u>	MB-4 (Field Blank)		Iab Instrument <u>Blank</u>	
Constituents	ug/L	4/89	8/89	4/89	8/89	4/89	8/89	4/89	8/89	4/89	8/89
Toluene	1.0							1.0			
Chloroform	1.0	4.0	2.0	4.0							
Methylene Chloride	1.0		2.0		2.0	1.0	2.0	3.0	2.0	2.0	
Tetrachloroethene	1.0		1.0		3.0						
PCBS 1242 1254 1221 1232 1248 1260 1016	1.0 1.0 1.0 1.0 1.0 1.0	 	 	 			 	 	 - - -	 	

*Complete 624 Priority Pollutant VOC Scan Performed on Each Sample; Only Those Compounds Present Above Lab Detection Limits Included on Table.

- -- Compound Not Present Above Laboratory Detection Limit.
- MB-4 Blind Field Blank Collected Prior to Collecting Mississippi River, Water Samples.

Iab Instrument Blank - Analysis Performed by Laboratory for Quality Control Purposes to Determine Extent of Lab Conntamination.

Methylene Chloride - Suspected Lab Contaminant (Present in Field Blank).

TABLE 15

AREA OF ELEMENTS USED IN VERTICAL FLUX CALCULATIONS AT THE ALCOA-DAVENPORT WASTE SITE.

Polygonal Element ID	El	ement Area (ft²)	
Va		91,187	
Vb		113,482	
Vc		161,357	
Vđ		184,493	
Ve		124,178	
Vf		69,472	
Vg		80,125	
Vh ·	,	38,327	
Vi	•	127,569	
	TOTAL AREA	990,194	

TABLE 16

LENGTH OF ELEMENTS USED IN HORIZONTAL
FLUX CALCULATIONS BENEATH THE HDPE LINER
AT THE ALCOA-DAVENPORT WASTE SITE

Horizontal Flux Curvilinear Element ID	El	ement Length (ft)	
HDPE 1		560	
HDPE 2		524	
HDPE 3		428	
HDPE 4		657	
	TOTAL LENGTH	2,170	

TABLE 17

TABLE OF HYDRAULIC PROPERTIES OF SATURATED FORMATION BENEATH WASTE DISPOSAL SITE BASED UPON SILIG TEST RESULTS

	HYDRAULIC CONDUCTIVITY			AQUIFER* HICKNESS		TRANSMISSIVITY		
WELL	FT/MIN	GAL/DAY/FT ²	TOTAL (FT)	UNCON- SOLIDATED	BEDROCK (FT)	FT ² /MIN	GAL/DAY/FT	
GM-4	2.67 X 10 ⁻³	28.84	5.6	3.70	1.90	1.49 X 10 ⁻³	161.50	
GM-6	6.58 X 10 ⁻³	70.84	4.6	1.60	3.00	3.03 X 10 ⁻²	325.86	
AS	1.00 X 10 ⁻³	10.77	3.7	3.7	0	3.7 X 10 ⁻³	39.85	
GM-12	2.97 X 10 ⁻³	32.03	3.5	3.5	0	1.04 X 10 ⁻²	112.10	
GM-14	1.45 X 10 ⁻²	156.32	2.5	2.5	0	7.27 X 10 ⁻²	390.80	
GM-16	3.91 X 10 ⁻⁴	4.22	11.0	2.00	9.00	4.30 X 10 ⁻³	46.42	

NOTES: Aquifer thickness comprised of unconsolidated and bedrock lithology, thus, the calculated K & T values represent a composite of the hydraulic properties for these two media.

TABLE 18

PRECIPITATION DATA FROM NATIONAL WEATHER SERVICE BUREAU AT
MOLINE AIRPORT FOR 1987

	MONTH											
DAY	JAN	FEB	MAR	APR	MAY	JUN	<u> Inr</u>	AUG	SEPT	<u>oct</u>	NOV	DEC
1	.28	0	.18	T	0	.20	0	0	0	0	.61	Tr
2	Tr	0	0	0	.23	Tr	0	0	0	0	.01	Τr
3	0	0	0	0	Tr	0	0	.09	0	0	0	.02
4	0	0	0	0	0	0	0	0	0	0	0	0
5	_0	0	0	0	0	0	. 15	0	0	Tr	_0	0 -
6	Tr	0	0	0	0	0	.20	0	.10	.02	Tr	.28
7	0	0	_	0	0	0	Tr	0	. 19	0	.09	.10
8	Tr	0	0	0	0	0	.11	2.03	0	0	īr	.18
9	.29	0	۲r	0	0	0	0	0	0	Tr	Tr	.04
10	.01	0	0	Tr	0	.02	.03	Τr	Tr	.02	0	0
111	0	0	0	ĬΓ	0	.04	0	0	0	0	0	.03
12	0	0	.11	0	0	0	Tr	0	.07	0	0	0
13	0	Tr .03	.02	.63	0	0 0	.02	.73	Tr 0	0	0	0
14	0		.32	.12	0	0	.72 .11	1.36 .16	.03	Tr Tr	.02	.22 .90
15 .	. 0	0	.19	0	0	0						
16		-	0	Τr	-	0	0	.71 0	.29	.09	.78	Tr
17	.10 Tr	0	.23	0	Tr O	0	0 Tr	Tr	.08 Tr	.02	.22 .01	0 Tr
18 19	0	0	.25 Tr	0	Τr	.02	0	0	Tr	.02	.01	1.39
20	0	0	0	0	2.15	.14	0	.08	Tr	.03	0	.18
21	Tr	.04	0	.46	.03	. 14	Tr	3.55	.04	.03	0	. 18
22	Tr	.04	ő	.04	.03	å	0	.02	.04	0	.05	0
23	'i	0	.05	.01	Ö	Ö	ő	.02	ŏ	.21	0	Τr
24	0	0	.56	.01	Tr	ŏ	Τr	.02	ő	.08	.34	.04
25	0	0	.19	0	.16	.80	0	3.38	Ö	.08	.05	0
26	ő	0	Tr	.19	0	0	Ö	3.05	ő	.05	Tr	ů
27	.07	Tr	.01	ő	.37	Ö	.18	.05	ŏ	.03	.26	.66
28	Tr	.82	.69	Õ		Ö	Tr	Tr	.31	Ö	.77	.42
29	.16	.02	.02	0	Tr.	.24	.39	Ö	. 0	Ö	.12	Tr
30	Tr		0	0	Tr	.08	.Jr	ő	Ö	Ö	Tr	Tr
31	Tr		ŏ	J	.38		Ö	ŏ	J	.18	• • •	Tr
Monthly Total	.91	.89	2.57	1.49	3.35	1.54	1.91	15.23	1.11	.79	3.33	4.46
Monthly Normal	1.64	1.30	2.77	3.97	4.21	4.32	4.88	3.76	3.74	2.70	1.96	1.92
Departure From Normal	73	41	20	-2.48	86	-2.78	-2.97	+11.47	-2.63	-1.91	+1.37	+2.54

All precipitation data reported in inches of water. Tr = Trace amount.

TABLE 19

PRECIPITATION DATA FROM THE NATIONAL WEATHER SERVICE BUREAU AT MOLINE AIRPORT FOR 1988.

DAY	JAN	FEB	MAR	APR	MAY	MONTH JUN	JUL	AUG	SEPT	<u>oct</u>	NOV	DEC
1	0	0.09		0	0	0	0	0	0	0.70	0	TR
2	Ŏ	TR	ŏ	0.27	Ö	Ŏ	TR	Ö	Ŏ	0.05	Ŏ	0
3	TR	0.13	Ŏ	0.32	Ō	Ŏ	Ö	Ŏ	0.03	TR	Ŏ	ō
4	TR	0.01	0	0	0	0	0	0.29	0.01	0	0.27	0
5	0	0	0	0.02	0.75	0	0	0	0	0	0.06	0
6	0	0	0	0.34	0	0	0	0	0	0	TR	0
7	0	0	TR	0	0	0	. 0	0	0	0	0.04	0
8	0	0.07	TR	0	0	0.38	0	0.59	0	0	0	0
9	TR	0.01	0	0	0.03	0	0	0.03	0	0	0.37	0
10	0	0.51	0	TR	0	0	0.24	0.36	0	0	TR	0
11	0	0.03	0.03	0	0.24	0	0	0	0	0	0	0
12	TR	TR	TR	0	0.10	0	0	0	0	0	0.78	0.01
13	0	TR	TR	0.01	TR	0	0	TR	0	0.	0	0
14	TR	0.24	TR	0	0	0	0.29	0	0	TR	0	0
15	0	0.01	TR	0	0.04	0	0	0	0	0	0.34	0
16	0	0.01	0	0	0	0	TR	0	0.12	0.01	0	TR
17	0.21	0	TR	0	0	0	TR	0	TR	0.57	0	TR
18	0	0	0	0	0	TR	TR	0.17	1.18	0.01	0.03	0
19	1.02	TR	TR	0	0	0	0.02	0.01	0.21	0	0.17	0
20	0.01	TR	0	0.01	0	0	0	0	0	0.40	TR	0.09
21	TR	TR	0	0.23	0	0	0	0	0	0.01	0	0
22	TR	0	0	TR	0.02	TR	0	1.77	TR	0.49	0	0.36
23	0.09	TR	TR	TR	1.14	0	0	TR	0	0.13	0	0
24	0.06	0	1.13	0	0	0.22	0	0	0	0	0	0.05
25	0.05	0	0.05	0.06	0	0	0	0	0	0	0.15	0
26	0	0	TR	0.10	0	0	0	0.02	0	0	0.90	0.37
27	TR	0	0	TR	0	0	0	1.65	0.05	TR	TR	0.69
28	0	0	0.91	0	0	0	0	0	0.34	0	0.03	TR
29	0	0	0.23	0	0	0.56	0.68	0	0	0	0	0
30	0		0	0	0	0	0	TR	0.03	0	TR	0
31	0.30		0		0	•	0	0		0		0
Monthly Total	1.74	1.08	2.36	1.36	2.32	1.16	1.79	4.89	1.97	2.37	3.14	1.57
Monthly Normal	1.64	1.30	2.77	3.97	4.21	4.32	4.88	3.76	3.74	2.70	1.96	1.92
Departure From Normal	+0.10	-0.22	-0.41	-2.61	-1.89	-3.16	-3.09	+1.33	-1.77	-0.33	+1.18	-0.35

All precipitation data reported in inches of water. $\ensuremath{\mathsf{TR}}$ - $\ensuremath{\mathsf{Trace}}$ amount.

TABLE 20

VERTICAL FLUX CALCULATIONS FOR MEAN ANNUAL CONDITIONS AT THE ALCOA-DAVENPORT WASTE SITE

Vertical Flux Polygonal	Vertical Head Difference (ft)			Vertical Flux ¹ (gal/day)		
Element ID	1987	1988		1987	1988	
Va	27	33		1230	1509	
Vb	36	38		2080	2201	
Vc	25	31		2048	2531	
Vd	20	27		1912	2566	
Ve	33	40		2091	2520	
Vf	20	27		709	952	
Vg	22	29		879	1178	
Vh	22	30		435	575	
Vi	24	31		1551	2000	
		ŗ	TOTAL FLUX	12,939	16,036	

 $^{^{1}}$ Assumes a vertical hydraulic conductivity of 0.004 ft/day and a uniform 60-ft thick confining unit.

	TOTAL FLUX Q (gal/day)	PRECIPITATION RECHARGE (gal/day)
1987	12,939	17,317
1988	16,036	12,674

TABLE 21

VERTICAL FLUX CALCULATIONS FOR MEAN NONPUMPING AND PUMPING CONDITIONS - AT THE ALCOA-DAVENPORT WASTE SITE.

Nonpumping Conditions

	Vertical			
Vertical Head	Flux ¹			
	<u>(gal/day)</u>			
1987 1988	1987 1988			
3 4	140 173			
19 11	1113 631			
1 3	88 217			
1 2	144 162			
13 14	859 858			
1 1	23 9			
2 2	. 95 78			
2 1	40 30			
-0.01 -0.2	-1 -11			
	Difference (ft) 1987 1988 3 4 19 11 1 3 1 2 13 14 1 1 2 2 2 1			

TOTAL FLUX

2,504

2,147

Pumping Conditions

Vertical Flux Polygonal		cal Head . ence (ft)	Vertical Flux¹ (gal/day)		
Element ID	1987	1988	1987	1988	
Va	63	68	2872	3081	
_ Vb	73	72	4123	4069	
Vc	62	67	4953	5363	
Vd	48	49	4383	4531	
Ve	60	62	3736	3851	
. Vf	47	49	1640	1706	
Vg	47	52	1895	2064	
Vh	50	53	951	1015	
Vi	56	59	3546	3755	

TOTAL FLUX

28,.100

29,437

 $^{^{\}rm 1}$ Assumes a vertical hydraulic conductivity of 0.004 ft/day and a uniform 60-ft thick confining unit.

TABLE 22

HORIZONTAL FLUX CALCULATIONS
FOR MEAN ANNUAL CONDITIONS
AT THE ALCOA-DAVENPORT WASTE SITE

Horizontal Flux Curvilinear	<u>Hydraul</u>	ic Gradient	Horizontal Flux¹ (gal/day)		
Element ID	1987	1988	1987	1988	
HDPE 1	0.012	0.006	231	114	
HDPE 2	0.008	0.009	149	172	
HDPE 3	0.013	0.011	192	168	
HDPE 4	0.041	0.016	967	379	
	····	TOTAL FLUX	1540	833	

 $^{^{1}}$ Assumes a horizontal hydraulic conductivity of 4.76 ft/day and a uniform thickness of 1 ft.

TABLE 23

SENSITIVITY ANALYSIS ON VERTICAL
FLUX CALCULATIONS FOR
MEAN ANNUAL CONDITIONS
AT THE ALCOA-DAVENPORT WASTE SITE

Vertical Flux Polygonal	Verti Flu (gal/	x^1	Vertical Flux ² _(gal/day)		
Element ID	1987	1988	1987	1988	
Va	164	202	1846	2265	
Vb	278	294	3120	3302	
Vc	274	339	3073	3797	
Vđ	256	343	2869	3850	
Ve	280	337	3138	3780	
Vf	95	127	1064	1429	
Vg	118	158	. 1319	1768 .	
Vh	59	77	654	863	
Vi -	208	268	2327	3001	
TOTAL FLUX	1,731	2,145	19,409	24,055	

 $^{^{\}rm 1}$ Assumes a vertical hydraulic conductivity of 5.35e-4 ft/day and a uniform 60-ft thick confining unit.

² Assumes a vertical hydraulic conductivity of 0.006 ft/day and a uniform 60-ft thick confining unit.

TABLE 24

SENSITIVITY ANALYSIS ON VERTICAL
FLUX CALCULATIONS FOR
MEAN NONPUMPING CONDITIONS
AT THE ALCOA-DAVENPORT WASTE SITE

Vertical Flux Polygonal	<u>(gal</u>	ux ¹ /day)_	Vertical Flux ² (gal/day)		
Element ID	1987 	1988	1987	1988	
Va	19	23	211	259	
Vb	149	84	1671	946	
Vc	12	29	133	326	
Vd	19	22	217	243	
Ve	115	115	1288	1287	
Vf	3	1	35	14	
۷g	13	11	142	117	
Vh	5	4	60	45	
Vi	-0.1	-2	-1	-17	
TOTAL FLUX	335	287	3,755	3,220	

 $^{^{\}rm 1}$ Assumes a vertical hydraulic conductivity of 5.35e-4 ft/day and a uniform 60-ft thick confining unit.

² Assumes a vertical hydraulic conductivity of 0.006 ft/day and a uniform 60-ft thick confining unit.

TABLE 25

SENSITIVITY ANALYSIS ON VERTICAL
FLUX CALCULATIONS FOR
MEAN PUMPING CONDITIONS
AT THE ALCOA-DAVENPORT WASTE SITE

Vertical Flux Polygonal Element ID		tical lux ¹ /day) 1988	Vertical Flux ² <u>(gal/day)</u> 1987 1988		
Va	384	412	4308	4622	
Vb	551	544	6185	6104	
Vc	663 [.]	717	7430	8046	
Vđ	586	606	6574	6797	
Ve	500	515	5605	577 <i>7</i>	
Vf	219	228	2460	2559	
Vg	254	276	2843	3096	
Vh	127	136	1427	1523	
Vi	474	502	5320	5633	
TOTAL FLUX	3,759	3,937	42,151	44,156	

 $^{^{1}}$ Åssumes a vertical hydraulic conductivity of 5.35e-4 ft/day and a uniform 60-ft thick confining unit.

 $^{^{2}}$ Assumes a vertical hydraulic conductivity of 0.006 ft/day and a uniform 60-ft thick confining unit.

TABLE 26 HYDRAULIC HEADS AND GRADIENTS IN BETROCK AQUIFER ADJACENT TO THE MISSISSTEPT RIVER FOR 1987 AND 1988

1987

	MEASUREMENT LOCATION	JAN	FEB	MAR	APR	MAY .	JUN	JUL	AUG	SEPT	ст	NOV	DEC
MEAN HYDRAULIC HEADS (FT MSL)	A Cluster D Cluster Miss River	555.36 554.25 561.78	559.09 559.34 561.58	562.06 562.86 561.88	562.54 563.35 561.87	562.15 561.67 561.33	539.92 537.75 561.32	526.39 523.53 561.16	519.33* 511.78 561.44	516.33* 506.84 560.83	512.41 505.44 560.83	533.61 529.99 562.18	542.23 540.99 562.30
HEAD DIFFERENCE (FT)	A to D Miss River to	-1.11	0.2 5	0.80	0.81	-0.48	-2.17	-2.86	-7.59	-9 .49	-6. 97	-3.62	-1.24
	A Cluster	-6.42	-2.49	0.18	0.67	0.82	-21.40	-34.77	-42.07	-44.5	-48.42	- 28.57	-20.07
HYDRAULIC CRADIENIS	A to D Miss River to	-1.11x10 ⁻³	2.5x10 ⁻⁴	8.0x10 ⁻⁴	8.10x10 ⁻⁴	-4.8x10 ⁻⁴	-2.17x10 ⁻³	-2.86x10 ⁻³	-7.59x10 ⁻³	-9.49x10 ⁻³	-6.97x10 ⁻³	-3.62x10 ⁻³	-1.24x10 ⁻³
	A Cluster	-1.28x10 ⁻²	-4.98x10 ⁻³	3.64x10 ⁻⁴	1.34x10 ⁻³	1.64x10 ⁻³	-4.28x10 ⁻²	-8.95x10 ⁻²	-8.41x10 ⁻²	-8.90x10 ⁻²	-9.68x10 ⁻²	-5.72x10 ⁻²	-4.01x10 ⁻²
													
						:	1988						
	MEASUREMENT LOCATION	JAN	FEB	MAR	AFR	May	JUN	JUL	AUG	SEPT	ст	NOV	DEC
MEAN HYDRAULIC HEADS (FT MSL)		§	FEB 560.89 561.89 561.88	MAR 562.92 563.63 562.50	APR 562.85 563.59 562.56		-	JUL 516.76 511.73 560.98	AUG 513.82 502.70 560.96	SEPT 512.33 505.74 561.18	OCT 513.78 507.89 561.18	NOV 515.13 510.93 560.98	DEC NM NM 561.60
HYDRAULIC HEADS	A Cluster D Cluster Miss River A to D Miss River	JAN 552.41 551.14	560.89 561.89	562.92 563.63	562.85 563.59	MAY 545.30 544.88	JUN 531.37 525.91	516.76 511.73	513.82 502.70	512.33 505.74	513.78 507.89	515.13 510.93	MM MM
HYDRAULIC HEADS (FT MSL) HEAD	A Cluster D Cluster Miss River A to D	JAN 552.41 551.14 562.38	560.89 561.89 561.88	562.92 563.63 562.50	562.85 563.59 562.56	MAY 545.30 544.88 561.55	JUN 531.37 525.91 561.36	516.76 511.73 560.98	513.82 502.70 560.96	512.33 505.74 561.18	513.78 507.89 561.18	515.13 510.93 560.98	MM MM
HYDRAULIC HEADS (FT MSL) HEAD	A Cluster D Cluster Miss River A to D Miss River to	JAN 552.41 551.14 562.38 -1.27	560.89 561.89 561.88	562.92 563.63 562.50 0.71	562.85 563.59 562.56	MAY 545.30 544.88 561.55	JUN 531.37 525.91 561.36	516.76 511.73 560.98 -5.03	513.82 502.70 560.96 -11.12	512.33 505.74 561.18	513.78 507.89 561.18	515.13 510.93 560.98	MM MM

TABLE 27
ESTIMATION OF CRUND-WATER FILIX RATES BETWEEN THE
BEDROCK AQUIFER AND THE MISSISSIPPI RIVER AT THE
ALCOA-DAVENPORT PLANT DURING 1987 AND 1988

1987

	K (GPD/FT ²)	A (FT ²)	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEPT	ccr	NOV	. DEC
HYDRAULIC GRADIENT	35	8.52x10 ⁵	-1.11x10 ⁻³ -3.31x10 ⁴	2.5x10 ⁻⁴ 7.46x10 ³	8.0x10 ⁻⁴ 2.39x10 ⁴			-2.17x10 ⁻³ -6.47x10 ⁴		-7.59x10 ⁻³ -2.26x10 ⁵		-6.97x10 ⁻³ -2.08x10 ⁵		
II	45	8.52x10 ⁵	-4.26x10 ⁴	9.59x10 ³	3.07x10 ⁴	3.11x10 ⁴	-1.84x10 ⁴	-8.32x10 ⁴	-1.10-x10 ⁵	-2.91x10 ⁵	-3.64X10 ⁵	-2.67x10 ⁵	-1.39x10 ⁵	-4.75x10 ⁴
	K (GPD/FT ²)	A (FI ²)	Jan	FEB	MAR	APR	198 MAY .	JUN	JUL	ALG	SEPT	ccr	NOV	DEC
HYDRAULIC GRADIENT			-1.27x10 ⁻³	1.0x10 ⁻³	7.1x10 ⁻⁴	7.4x10 ⁻⁴	-4.20x10 ⁻⁴	-5.46x10 ⁻³	-5.03x10 ⁻³	-1.11x10 ⁻²	-7.0x10 ⁻³	-5.89x10 ⁻³	-4.2x10 ⁻³	NM .
I	35	8.52x10 ⁵	-3.79x10 ⁴	2.98x10 ⁴	2.12x10 ⁴	2.21x10 ⁴	-1.25x10 ⁴	-1.63x10 ⁵	-1.50x10 ⁵	-3.31x10 ⁵	-2.09x10 ⁵	-1.76x10 ⁵	-1.25x10 ⁵	NM
II	45	8.52x10 ⁵	-4.87x10 ⁴	3.83×10 ⁴	2.72x10 ⁴	2.84x10 ⁴	-1.61x10 ⁴	-2.09x10 ⁵	-1.93x10 ⁵	-4.23x10 ⁵	-2.68x10 ⁵	-2.26x10 ⁵	-1.61x10 ⁵	NM

NOTES

All flux rate units provided in gallons.

I. Flux rates calculated using lower boundary hydraulic conductivity, K, (35 gpd/ft²)

II. Flux rates calculated using upper boundary hydraulic conductivity, K, (45 gpd/ft²)

Negative values indicate that ground-water flux is directed toward the center of the Alcoa Plant from the river.

Positive values are shown in bold pring and indicate that ground-water flux is directed toward the river from the Alcoa Plant.

28B/TBL-27.WP4

TABLE 28

ESTIMATED MAXIMUM GROUND-WATER FILIX TO THE MISSISSIPPI RIVER FROM THE BEDROCK AQUIFER, ALCOA-DAVENPORT PLANT

	IOW K FILIX VOILIME (GALLONS)	HIGH K FILIX VOLUME (GALLONS)	DURATION OF FLUX CONDITIONS (DAY)	AVERAGE FI LOW K (gal/day)	DAILY UX HIGH K (gal/day)	MEDIAN (gal/day)
1987	1,700,000	2,280,000	93 days	18,280	24,515	21,398
1988	1,570,000	1,990,000	80 days	19,625	24,875	22,250

NOTES: Flux Rates Provided for only that Portion of the Bedrock Aquifer which may Contain Waste-Site VOCs (see Figure 50).

28B/TBL-28.WP4

TABLE 29

MEAN VOC CONCENTRATIONS AT THE ALCOA-DAVENPORT WASTE SITE⁺
(Concentrations in ppb)

	OCT. 1986	APRIL 1	OCT. 987	MAY 1	OCT.	APRIL 1989	COMBINED MEAN	HIGH MEAN
Vinyl Chloride	9.8 (12.2)	3.6 (6.0)	14.6 (17.0)	12.0 (14.4)	ND (4.0)	38.2 (15.35)	13.0 (15.4)	38.5
1,2-DCE	41.8 (42.6)	12.4 (14.8)	36.8 (37.6)	26.6 (28.2)	15.3 (16.7)	130.0 (130.2)	43.8 (45.0)	130.2
Other VOCs*	1.0 (4.2)	ND (4.0)	1.0 (4.2)	1.2 (4.4)	ND (4.0)	0.4 (0.8)	0.6 (3.6)	4.4
Toluene	2.4 (4.8)	ND (4.0)	1.4 (4.6)	ND (4.0)	3.3 (6.0)	1.0 (1.3)	1.4 (4.1)	6.0

NOTES: ND = Not Detected

Mean Concentration Calculated Using Concentrations in Table 4.0.

Numbers in parentheses Represent the Mean Concentration Using the Concentrations in Table 4.0 Plus Adding Finite Concentrations for Nondetection (Equal to Approximately 1/2 Lab Detection Limit).

28B/TBL-29.WP4

^{* 1,1-}DCE; 1,1-DCA; TCE; and chloroethane.

⁺ For wells AS, GM-4, GM-6, GM-10, and GM-12

TABLE 30

ESTIMATED VOC AND PCB LOADING RATES TO THE MISSISSIPPI RIVER FROM THE ALCOA-DAVENPORT WASTE SITE

COMPOUNDS	AVERAGE	I II III TRATIONS CONCENTRATIONS LOADING RATE TO RIVER WORST CASE AVERAGE WORST CASE AVERAGE WORST CASE MG/1) B A (lbs/gal) B C (lbs/day) D			IV ANNUAL LOADIN TO RIVER E (lbs) I			
Vinyl Chloride	15.40	38.5	1.28 X 10 ⁻⁷	3.22 X 10 ⁻⁷	1.97 X 10 ⁻⁴	9.97 X 10 ⁻⁴	.072	0.36
1,2-DCE	45.0	130.2	3.76 x 10 ⁻⁷	1.09×10^{-6}	5.79 x 10 ⁻⁴	3.37×10^{-3}	0.211	1.23
Other VOCs ⁺	3.6	4.4	3.01 x 10 ⁻⁸	3.68×10^{-8}	4.64 x 10 ⁻⁵	1.14×10^{-4}	0.017	0.04:
Toluene	4.1	6. 0	3.43×10^{-8}	5.02×10^{-8}	5.28 x 10 ⁻⁵	1.55×10^{-4}	0.019	0.05
PCBs 18.0 ⁺			1.50 × 10 ⁻⁷	1.50 x 10 ⁻⁷	2.31 x 10 ⁻⁴	4.64 × 10 ⁻⁴	0.084	0.169
54.0			4.51 x 10 ⁻⁷	4.51×10^{-7}	6.95 x 10 ⁻⁴	1.40×10^{-3}	0.254	0.51

- NOTES: 1) Values in column II multiplied by flux rate discharging to river to obtain values in column II
 - 2) Values provided in I and II determined using:

A cumulative mean values (Table 29)

B high mean values (Table 29)

3) Values provided in II determined using 1987 flux rates:

average: 1540 gpd worst case: 3096 gpd

4) Annual loading values computed for 365 days

E: average F: worst case

* Other VOCs: 1,1-DCE; 1,1-DCA; TCE; and, chloroethane PCBs⁺ Represent solubility range of PCBs in water

18.0 ug/l 54.0 ug/l

INDIE 31 MEAN VOC CONCENTRATIONS WITHIN THE FORTION OF THE BEDROCK AQUIFER DOWNCRADIENT FROM THE WASTE SITE[†] (Concentrations in ppb)

	March	December	1986 October	April	87 October	198 May	88 October	1989 April	October	MEAN	MAXIMIM CONCENTRATIONS
Vinyl Chloride	4.75 (7.75)	13.25 (16.25)	31.86 (33.57)	42.29 (43.43)	13.14 (16.0)	15.13 (19.50)	55.43 (57.14)	100.63 (102.63)		34.56 (37.03) 102.63
1,2- Dichloroethene	91.0 (92.0)	120.75 (122.75)	89.86 (91.0)	94.71 (95.85)	22.86 (27.43)	27.13 (28.13)	111.57 (112.14)	199.88 (201.38)		94.72 (96.34) 201.38
Other VOCs*	ND (4.0)	ND (4.0)	17.43 (20.29)	18.57 (20.28)	10.57 (13.43)	19.63 (25.13)	42.43 (48.15)	73.75 (78.75)	Ì	22.80 (26.75	78.75
Toluene	ND (4.0)	10.25 (13.25)	ND (4.0)	ND (4.0)	NED (4.0)	ND (4.0)	ND (4.0)	ND (3.56)	1	1.28 (5.10)	13.25
Tetrachloroethane	ND (4.0)	NID (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	0.88 (4.38)	61.43 (64.85)	67.50 (70.56)		16.23 (19.97) 70.56
1,1,1- Trichloroethane	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	0.75 (3.81)		0.09 (3.98)	3.98
Benzene	ND (4.0)	ND (4.0)	1.0 (4.43)	ND (4.0)	ND (4.0)	1.5 (5.00)	2.71 (5.88)	2.25 (5.25)		0.93 (4.57)	5.88

ND = Not Detected

Mean Concentrations in Parentheses Calculated Using Concentrations in Table 6.0 Plus Substitutions for Nondetection

tbl-mea.n2

⁺ For well clusters A, B, D, and FW-6

^{* 1,1-}DOE; 1,1-DOA; TOE, and chloroethane Compounds in Bold Print Represent Non Waste-Site VOCs Mean Concentrations Calculated Using Concentrations in Table 6.0

ESTIMATED VOC LOADING TO THE MISSISSIPPI RIVER FROM THE BEDROCK AQUIFER BENEATH THE ALCOA-DAVENPORT PLANT

COMPOUNDS	I CONCENTRATIONS (ug/1) AVERAGE WORST CASE A B		II CONCENTRATIONS (1bs/gal) AVERAGE WORST CASE A B		III LOADING RATE TO RIVER (lbs/day) AVERAGE WORST CASE C D		IV ANNUAL TO RIVE E	LOADING
Vinyl Chloride	37.03 96.34	102.63 201.38	3.10 X 10 ⁻⁷ 8.07 X 10 ⁻⁷	8.58 X 10 ⁻⁷ 1.68 X 10 ⁻⁶	6.63 X 10 ⁻³ 1.73 X 10 ⁻²	2.10 X 10 ⁻² 4.12 X 10 ⁻²	0.62 1.60	1.96
Other VOCs+	26.75	78.75	2.24 X 10 ⁻⁷	6.58 X 10 ⁻⁷	4.79 X 10 ⁻³	1.61 X 10 ⁻²	0.45	1.50
Toluene	5.10	13.25	4.26 X 10 ⁻⁸	1.11 X 10 ⁻⁷	9.12 X 10 ⁻⁴	2.72×10^{-3}	0.08	0.25
PCE	19.97	70.56	1.67 X 10 ⁻⁷	5.91 X 10 ⁻⁷	3.57 X 10 ⁻³	1.45 X 10 ⁻²	0.33	1.34
1,1,1-TCA	3.98	3.98	3.33 X 10 ⁻⁸	3.33 X 10 ⁻⁸	7.13 X 10 ⁻⁴	8.16 X 10 ⁻⁴	0.07	0.08
Benzene	4.57	5.88	3.82 X 10 ⁻⁸	4.92 X 10 ⁻⁸	8.17 X 10 ⁻⁴	1.21 X 10 ⁻³	0.08	0.11

NOTE: 1) Values in column II multiplied by flux rate discharging to river to determine values in column III

2) Values provided in I and II determined using the following:

A concentrations represent cumulative mean values (Table **)

B concentrations represent high mean values (Table **)

3) Values provided in III determined using the ground-water flux volumes computed for 1987:

min. 18,300 gpd, max. 24,500 gpd, median 21,400 gpd

The loading rates provided under C were computed using median flux rate for 1987 and A concentrations

The loading rates provided under D were computed using maximum flux rate for 1987 and B concentrations

4) Annual contaminant loading rates provided in IV were computed for the 93 days during 1987 when flux to the river occurred E values represent average estimated flux rates computed using A and C columns

F values represent worst case estimated flux rates computed using B and D columns

* VOCs in bold print represent non waste-site VOCs

*Other VOCs: 1,1-DCE: 1,1-DCA; TCE; and Chloroethane

TBL-32.WP4

TABLE 33

SUMMARY OF VOLATILE ORGANIC COMPOUND CONCENTRATIONS
IN MILL WATER SAMPLES COLLECTED AT ALCOA - DAVENPORT
WORKS PLANT WATER RECLAMATION FACILITY AND
COOLING TOWER APRIL AND AUGUST, 1989

VOCs		11		2		3
	4/89	8/89	4/89	8/89	4/89	8/89
Vinyl chloride	16.0	2.0	13.0	· -	_	-
1,1-Dichloroethane	2.0	-	2.0	-	_	-
1,2-Dichloroethylene (total)	12.0	9.0	8.0	7.0	_	-
Chloroform	33.0	24.0	32.0	19.0	17.0	4.0
Bromodichloromethane	1.0	3.0	1.0	2.0	_	-
Trichloroethene	16.0	11.0	14.0	10.0	_	-
Tetrachloroethene	28.0	500.0	26.0	540.0	2.0	21.0

All Concentrations Reported in ug/l.

- --- Indicates that the Compound was not Present Above the Laboratory Detection Limit
- 1. Water Sample Collected from the Water Reclamation Facility where Mill Water is Initially Pumped into the Above Ground Tank.
- 2. Water Sample Collected from the Water Reclamation Facility where Mill Water is Discharged from the Above Ground Tank to the Cooling Tower.
- 3. Water Sample Collected after Mill Water has Passed through the Cooling Tower.

Note:

Complete 624 VOC Analysis Performed, Only those VOCs Present Above Laboratory Detection Limits are Provided here.

TABLE 34

Alcoa Davenport Works ISCLT Modeling - Mass Emission Rates and Ambient Air MEGs

			Water Re	Emission Rates	s MEG (1) (ug/M3)	TLV-TWA (2) (mg/M3)	TLV/420 (3) (ug/M3)
Volatile Organic Compound:	"A"	"B"	Tank	Cooling	Tower		•
Vinyl Chloride*	3.0	13.0	0.002268	0.009828	1200.0	13.0	31.0
1.1-Dichloroethane*	0.0	2.0	0.000000	0.001512		810.0	1928.6
1,2-Dichloroethylene*	4.0	8.0	0.003024	0.006048	1880.0	793.0	1888.1
Chloroform	5.0	15.0	0.003780	0.011608	23.0	49.0	116.7
Bromodichloromethane	1.0	2.0	0.000756	0.001512	81.0		
Trichloroethene*	2.0	14.0	0.001512	0.010584	1274.0	269.0	640.5
Tetrachloroethene	2.0	519.0	0.001512	0.392695	1595.0	339.0	807.1

- "A" Decrease in VOC concentration (ug/l) in Mill Water at the Alcoa Water Reclamation Facility between the Intake and Discharge Location in the Above Ground Tank.
- "B" Decrease in VOC concentration (ug/l) in Mill Water at the Alcoa Water Reclamation Facility
 After Flowing through the Cooling Tower.
- (1) MEG Toxicity based estimated permissible concentration, based upon health effects. Multimedia Environmental Goals for Environmental Assessment, Volume III
- (2) TLV-TWA The time weighted average concentration for a normal 8-hour workday and a 40-hour workweek, to which nearly all workers may be repeatedly exposed, day after day, without adverse healty effects. 1989-1990 ACGIH
- (3) TLV/420 Conversion of ACGIH TLV acceptable workplace exposure value to a conservative ambient air guideline.
- * Represents VOCs detected at the waste site.

TABLE 35

ESTIMATED VOC CONTAMINATION OF THE MISSISSIPPI RIVER FROM ALCOA-DAVENPORT (concentrations in ppb)

COMPOUND	SEEPAGI WASTE S			GE FROM AQUIFER ^B	COMBINED SEEPAGE FROM WASTE SITE AND BEDROCK AQUIFER		
	WORST CASE	AVERAGE	WORST CASE	AVERAGE	WORST CASE	AVERAGE	
Vinyl Chloride 1,2- Dichloroethene	6.65 X 10 ⁻³ 2.24 X 10 ⁻²	3.29 X 10 ⁻⁴ 9.65 X 10 ⁻⁴	4.34 X 10 ⁻³ 8.52 X 10 ⁻³	6.86 X 10 ⁻⁴ 1.78 X 10 ⁻³	1.10 X 10 ⁻² 3.09 X 10 ⁻²	1.02 X 10 ⁻³ 2.75 X 10 ⁻³	
Other VOCs*	7.60 X 10 ⁻⁴	7.73 X 10 ⁻⁵	3.33 X 10 ⁻³	4.96 X 10 ⁻⁴	4.09 X 10 ⁻³	5.73 X 10 ⁻⁴	
Toluene	1.03 X 10 ⁻³	8.80 X 10 ⁻⁵	5.63 X 10 ⁻⁴	9.43 X 10 ⁻⁵	1.59 X 10 ⁻³	1.82 X 10 ⁻⁴	
Tetrachloroethene	NA	NA	3.00 X 10 ⁻³	3.69×10^{-4}	3.00 X 10 ⁻³	3.69 X 10 ⁻⁴	
1,1,1-TCA	NA NA	NA	1.69 X 10 ⁻⁴	7.38 X 10 ⁻⁵	1.69 X 10 ⁻⁴	7.38 X 10 ⁻⁵	
Benzene	NA	NA	2.23 X 10 ⁻⁴	8.45 X 10 ⁻⁵	2.23 X 10 ⁻⁴	8.45 X 10 ⁻⁵	

28B/tbl-35.wp4

ESTIMATED VOC CONTAMINANTION OF THE MISSISSIPPI RIVER FROM ALCOA-DAVENPORT (concentrations in ppb) (Continued)

NOTES:

A 250 foot discharge zone

B 750 foot discharge zone

NA = Not Applicable

Assumptions for Worst Case Scenario:

- 1) Minimal flow in the Mississippi River (0.027 ft/sec near shore and .136 ft/sec offshore)
- 2) Maximum mean contaminant loading concentrations and flux rates

Assumptions for Average Conditions Scenarios:

- Low flow rate for the Mississippi River (0.069 ft/sec near-shore and 0.272 ft/sec off-shore in bedrock aquifer discharge zone);
- 2) Steady state conditions;
- 3) Average contaminant loading concentrations; flux rates; and,
- 4) No reduction in contamination due to chemical and physical processes.

Compounds in bold print represent non waste-site VOCs

28B/tbl-35.wp4

^{* 1,1-}DCE; 1,1-DCA; TCE; Chloroethane

TABLE 36

ESTIMATED CONTAMINATION OF THE MISSISSIPPI RIVER WITH PCB AROCLOR 1248 (All Concentrations Reported in ppb)

SCENARIO		DING FROM E SITE	PCB LOADING FROM BEDROCK AQUIFER	PCB LOADING FROM* RIVER SEDIMENTS	CUMULATIVE ESTIMATED PCB CONCENTRATIONS IN RIVER		
	18.0+	54.0 ⁺			18.0 ⁺	54.0 ⁺	
1WORST CASE	3.10 X 10 ⁻³	9.30 X 10 ⁻³	NA	6.2 X 10 ⁻²	6.51 X 10 ⁻²	7.13 X 10 ⁻²	
² AVERAGE CONDITIONS	3.9 X 10 ⁻⁴	1.16 X 10 ⁻³	NA	5.6 X 10 ⁻³	5.99 X 10 ⁻³	6.76 X 10 ⁻³	

NOTES:

NA = Not Applicable

¹Assumptions for Worst Case Scenario:

- 1) Minimal Flow in Mississippi River is 0.027 ft/sec (1 ft/37 sec)
- 2) Maximum Seepage Rate to River (3096 gpd)

²Assumptions for Average Conditions Scenario:

- 1) Conservatively Low Flow in Mississippi River is 0.069 ft/sec (1 ft/14.5 sec)
- 2) Average Seepage Rate to River (1540 gpd)
- 18.0 PCB Aroclor 1248 Solubility Limit in Water Most Representative of Site Conditions
- 54.0 PCB Aroclor 1248 Solubility Limit in Water Based on EPA Literature Value
- * PCB Loading Rate to River from Sediments Obtained from YMA FGETS Report (YMA, 1990)

TABLE 37

Annual average ground level concentraton results for specific point of interest Values presented are in units of micrograms per cubic meter (ug/M3)

Volatile Organic Com School Fence 1 Fence 2 Fence 3 Fence 4 Fence 5 Fence 6 Fence 7 Fence 8 Fence 9 Fence 10

Vinyl Chloride 0.002151 0.002361 0.007912 0.006271 0.003940 0.003843 0.004828 0.005045 0.004418 0.006941 0.005927 1,1-Dichloroethane 0.000123 0.000201 0.000686 0.000524 0.000236 0.000241 0.000426 0.000496 0.000432 0.000580 0.000148 1,2-Dichloroethylene0.002292 0.002208 0.007349 0.005918 0.004151 0.003998 0.004449 0.004411 0.003874 0.006547 0.007214 Chloroform 0.003195 0.003299 0.011023 0.008799 0.005821 0.005643 0.006702 0.006842 0.005999 0.009737 0.009412 Bromodichloromethane0.000573 0.000552 0.001837 0.001479 0.001038 0.000999 0.001112 0.001103 0.000969 0.001637 0.001803 Trichloroethene 0.001762 0.002111 0.007103 0.005577 0.003257 0.003205 0.004355 0.004686 0.004097 0.006175 0.004345 Tetrachloroethene 0.032901 0.053020 0.180397 0.137912 0.062977 0.064161 0.112049 0.130077 0.113293 0.152792 0.041631

^{*} Figure 3-1 illustrates the orientation of the ten fence line receptors and the school receptor.

TABLE 38

Magnitude of Exposure Resulting from Contact with Contaminants in the Mississippi River as a Result
Discharge from Alcoa Waste Site, Riverdale, Iowa.

Contaminant	Short-Term "Worst"	Conservative "Long-Term Conditions"	Short-Term "Worst"	Conservative "Long-Term Conditions"
Winni ablania	1.10E-05	1.02E-06	1.17E-09	1.08E-10
Vinyl chloride			3.28E-09	2.92E-10
1,2-Dichloroethene	3.09E-05	2.75E-06	• · - • - · · ·	
Other Chlorinated VOCs*	4.09E-06	5.73E-07	4.34E-10	6.08E-11
Toluene	1.59E-06	1.82E-07	1.69E-10	1.93E-11
Tetrachloroethene	3.00E-06	3.69E-07	3.18E-10 '	3.92E-11
1,1,1-Trichloroehtane	1.69E-07	7.38E-08	1.79E-11	7.83E-12
Benzene	2.23E-07	8.45E-08	2.37E-11	8.97E-12
PCBs (54 ppb sol.)	7.13E-05	6.32E-05	7.57E-09	6.71E-09

CDI = A+BA = (SWC) (SA) (WFR) (EVD) (EF) (EXD) (UC [1])(BW) (UC[2]) B = (SWC) (SA) (WIR) (EF) (EVD) (EXD)(BW) (UC[2]) (UC[3]) BW[c] Adult body weight (kg). CDI Chronic daily intake (mg/kg bw/day). [b] \mathbf{EF} [d] Event frequency (days/year). EVD [e] Event duration (hrs/event). EXD [f]Exposure duration (years/lifetime). SA (g) Surface area available for contact (cm2). SWC Surface water concentration (mg/l). [a] UC [1] Unit conversion (1E-6 1/mg). Unit conversion (27,375 d/lifetime). UC [2] UC [3] Unit conversion (1000 ml/l). WFR [h] Water flux rate (mg/cm2.hr). WIR [i] Water ingestion rate (ml/hr).

TABLE 38

Magnitude of Exposure Resulting from Contact with Contaminants in the Mississippi River as a Result Discharge from Alcoa Waste Site, Riverdale, lowa.

(Continued)

- c Assumes an adult weighs 70 kg.
- An adult waterskis in this water 51 days/year.
- . Assumes adult waterskis for 3 hr during which times he/she falls in water 6 times and spends 10 min. in water (1 hr/event)
- f An adult waterskis in this water during ages 15-40 (for 25 yrs/lifetime).
- For exposure to water, available surface area is the whole body or 19,000 cm2. (USEPA, 1988a).
- Water flux rate is assumed to be 0.5 mg/cm2hr.
- i Gulping map result in an intake of 150 ml/hr (3 times the normal assumed gulping intake of 50 ml/hr [USEPA, 1989a]).
- Includes 1,1-dichloroethene, 1,1-dichloroethane, trichloroethene and chloroethane.

TABLE 39

INHALATION EXPOSURE DOSES FOR AIR AFFECTED BY THE SITE, RIVERDALE, IOWA

Contaminant	Concentration in Air [a] (ug/m3)	Exposure Dose (mg/kg bw/d)
Bromodichloromethane	0.001837	1.5E-07
Chloroform	0.011023	9.1E-07
1,1-Dichloroethane	0.000686	5.6E-08
1,2-Dichloroethene	0.007349	6.0E-07
Tetrachloroethene	0.180397	1.5E-05
Trichloroethene	0.007103	5.8E-07
Vinyl chloride	0.007912	6.5E-07

[a] Concentrations in air are for the position designated "Fence 2", Table 2-1, Appendix ___.

Exposure Dose =	(IR)(CONA)(RLIF)(EXD)(UC) (LIF)(BW)
BW	Body weight (70 kg) (USEPA, 1988a).
IR	Inhalation rate (0.6 m3/hr). Assumes light
	activity (USEPA, 1989a).
CONA	Concentration in air (ug/m3).
EXD	Exposure duration (24 hours/day).
LIF	Lifetime (27,375 days) (USEPA, 1989a).
RLIF	Lifetime in residence (30 years or 10,950 days)
	(USEPA, 1989a).
UC	Unit conversion (0.001 mg/ug).

TABLE 40

ACCEPTABLE DOSES, CANCER POTENCY FACTORS, AND
U.S. ENVIRONMENTAL PROTECTION AGENCY CANCER CLASSIFICATION OF
CONTAMINANIS DETECTED AT THE ALCOA WASTE SITE, RIVERDALE, IOWA

Oral 0.0001 ^b 0.0007 ^c 0.01 0.1 ^d 0.009	(0.0001) 0.0007 ^C (0.01) 0.1 ^d (0.009)	7.7 ^b 0.029 0.0061 0.091 ^d	(7.7) 0.029 0.081 (0.091)	Classification B2 A B2 B2
0.007 ^c	0.0007 ^C (0.01) 0.1 ^d	0.029 0.0061 0.091 ^d	0.029	A B2
0.01 0.1 ^d	(0.01) 0.1 ^d	0.0061 0.091 ^d	0.081	B2
0.1 ^d	0.1 ^d	0.091 ^d		
•			(0.091)	B2
0.009	(0.009)			
		0.6	1.2	С
0.01 ^e	(0.01)	-	-	D
0.02	(0.02)	-	-	D
0.3	1.0 ^d	-	-	D
0.01	(0.01)	0.051 ^d	0.0033 ^d	B2
0.09	0.3 ^d	-	-	D
0.0074 ^f	(0.0074)	0.011	0.013	B2
0.0013 ⁹	(0.0013)	2.3 ^d	0.295 ^d	A
	0.02 0.3 0.01 0.09 0.0074 ^f 0.0013 ^g	0.02 (0.02) 0.03 1.0 ^d 0.01 (0.01) 0.09 0.3 ^d 0.0074 ^f (0.0074) 0.0013 ^g (0.0013)	0.02 (0.02) - 0.3 1.0 ^d - 0.01 (0.01) 0.051 ^d 0.09 0.3 ^d - 0.0074 ^f (0.0074) 0.011 0.0013 ^g (0.0013) 2.3 ^d Cource of ADs and q*s was IRIS unless	0.02 (0.02) 0.3 1.0 ^d 0.01 (0.01) 0.051 ^d 0.0033 ^d 0.09 0.3 ^d 0.0074 ^f (0.0074) 0.011 0.013

Source of ADs and q*s was IRIS unless otherwise noted. If d
the inhalation route were not available, the oral data wer
(number in parenthesis).

b USEPA, 1988b.
c USEPA, 1986b.
d USEPA, 1989c.
e Based on the proposed MCIG.
f USEPA, 1987.

USEPA, 1987. Dow Chemical Co., 1984.

g

Although the USEPA (1989c) lists 1,1 DCA as a B_2 carcinogen based on its structural similarity to 1,2 DCA, it should be noted that this designation has not been verified.

TABLE 41
TOXICITY SUMMARIES FOR CONTAMINANIS DETECTED AT
THE ALCOA WASTE SITE, RIVERDALE, IOWA

Contaminant	Acute Toxicity Summary	Chronic Toxicity Summary	Carcinogenic Potential	Other Effects
Arcelor 1248	Liver enzyme changes, liver and kidney damage, weight loss, hemonthaging, and skin effects at high doses.	Chloracne, burning eyes and skin, immunosuppression, induction of cytochrome P-450, hepatomegally.	Hepatocellular carcinomas produced in rats. Evidence indicates that PCBs probably act as promoters. Insufficient evidence to classify as a human carcinogen.	Fetotoxic but not likely teratogenic. Most mutagenic studies have been negative.
Benzene	Primarily central nervous system (CNS) effects such as dizziness, exhiliration, nausea, vomiting, headache, staggering, loss of balance, narcosis, coma, and death. Effects are rapidly reversible and concentration-dependent.	Hematological poison causing aplastic anemia, immune system depression, and susceptibility to tuberculosis and pneumonia. Terminal event in severe benzene toxicity is often acute overwhelming infection.	Benzene has produced both solid tumors and leukemia in rats orally dosed. Epidemiologic evidence of increased cancer incidence follow- ing inhalation exposure. EPA group A: Human Carcinogen.	Iow levels of benzene do not elicit CNS effects no matter how long the exposure.
Chloroethane	ONS and cardiac depression, and nausea at high inhalation doses (>20,000 ppm). Has caused death in humans when used as an anesthetic. Also may irritate eyes and skin. Kidney and liver effects reported in animals.	No non-cancer effects reported in 2-year study of rats exposed to 15,000 ppm. Mild kidney effects and hyperactivity reported in mice exposed to 15,000 ppm for two years. One report of narcotic use in humans indicated cerebellar dysfunction which was reversible.	Recently completed study from inhalation exposure reported significant increase in uterine carcinomas and hepatocellular carcinomas in female mice. Equivocal evidence in rats for carcinogenicity.	Equivocal evidence for genotoxic effects. No evidence for reproductive or developmental effects.
Chlarofam	Chloroform was previously widely used as an anesthetic because of its narcotic effect. Prenarcosis central nervous system effects include dizziness, giddiness, and exhilaration. Post-narcotic effects include mental dullness, fatigue, headaches and nausea.	Chronic administration of chloroform has resulted in kidney and liver disorders.	Epidemiologic studies suggest that chloroform and other tri- halomethanes in the drinking- water supply may be associated with increased bladder cancer in humans. These reports do not establish causality. A dose- related increase in kidney epithelial tumors in rats and hepatocellular carcinomas in mice has been observed.	Chloroform is not muta- genic in bacterial assays. Oral doses which result in maternal toxicity result in mild fetal toxicity, in the form of reduced birth weight.

TALLE 41 TOXICITY SUMMARIES FOR CONTAMINANIS DETECTED AT THE ALCOA WASTE SITE, RIVERDALE, IOWA (Continued)

		(Calcinea)		
Contaminant	Acute Toxicity Summary	Chronic Toxicity Summary	Carcinogenic Potential	Other Effects
1,1-Dichloro- ethane	Inhalation exposure results in CNS depression and skin irritation, drowsiness, un-	Kidney and liver damage observed in animals exposed to high concentrations. Some consciousness. Inhalation of high doses (>16,000 mg/m³) caused retarded fetal development in rats.	NCI bicassay inconclusive for laboratory animals. No epidemio-logical evidence in humans. evidence of hepatotoxicity in animals.	Not mutagenic in Ames assay.
1,1-Dichloro- ethene	Acute exposure to high doses causes ONS depression.	Neurotoxicity has not been associated with low-level chronic exposure. Chronic exposure to oral doses as low as 5 mg/kg/day caused liver changes in rats.	Causes kidney tumors (in males only) and leukemia in one study of mice exposed by inhalation, but the results of other studies were equivocal or negative.	Mutagenic in several bacterial assays. Did not appear to be teratogenic but did cause embryotoxicity and fetotoxicity when administered to rats and rabbits by inhalation.
c-1,2-Dichloro ethene	- CNS depression, nausea, fatty liver, and transient renal	No data available for chronic exposures. Liver and kidney toxicity. Also irritates skin and mucous membranes.	Has not yet been studied for carcinogenicity. effects likely.	Mutagenic and geno- toxic effects reported in mice.
t-1,2-Dichlaro ethene	 High concentrations have an- esthetic properties as a result of CNS depression. Irritation of eyes and respiratory system. 	Repeated exposure via inhalation of 800 mg/m³ reportedly produced fatty degenration of the liver in rats. Possible interaction with hepatic drug-metabolizing	No data available. using <u>E. coli, Salmone-</u> <u>lla, or mouse bone-</u> marro cells.	Not mutagenic in assays
Tetrachloro- ethane	Short-term inhalation expos- ure in humans can result in depression of the ONS charac- terized by dizziness, impair- ed memory, confusion, irrit- ability "inebriation-like" symptoms, tremors, and numb- ness. Impairment, hepatitis, and enlargement of the spleen and liver have been reported.	Very little data are available concerning long-term exposure. Hepatotoxic effects have been documented for long-term inhalation exposures to workers as have hepatitis, circhosis, liver-cell necrosis, enlarged liver, and kidney disease. Oral exposures in experimental animals resulted in minor liver impact in rats.	Found to produce liver cancer in mice. Inhalation studies with rats have yielded evidence of carcinogenicity (leukemia). No epidemiological studies conclusively linking human exposure to carcinogenicity.	monooxygenase. Animal studies suggest potential teratogenic and embryotoxic effects.

TABLE 41

TOXICTIY SUMMARIES FOR CONTAMINANIS DETECTED AT THE ALCOA WASTE SITE, RIVERDALE, IOWA (Continued)

Contaminant	Acute Toxicity Summary	Chronic Toxicity Summary	Carcinogenic Potential	Other Effects
1,1,1-Trichloro- ethane	Depression of the CNS is the primary toxic effect in humans from short-term, high-level, inhalation exposures. Some have been fatal. Acute, high-level exposures can also adversely affect the cardiovascular system. Accidental ingestion resulted in CNS depression and gastrointestinal upset. It is irritating to skin; liquid can be absorbed through the skin. Acute exposures indicate that this compound is relatively non-toxic, aside from CNS effects. The oral ID50s (rats) is about 11,000 mg/kg.	Iong-term inhalation studies in animals resulted in liver changes. Occupational studies did not indicate any statistically significant effects after prolonged inhalation exposures. It appears to be no more toxic upon long-term exposure than acute exposure. Iong oral doses given test animals over a 78-week period indicated little apparent histopathological change in any organ.	Recent NTP study inconclusive. No evidence of carcinogenicity.	Equivocal evidence of mutagenicity from bacterial assays.
Toluene	ONS effects such as: fatigue, weakness, confusion, euphoria, dizziness, headache, insomnia, muscular weakness, and inco-ordination.	Chronic exposure to vapors at 200 to 800 ppm associated with disturbances in memory, thinking, psychomotor skill, visual accuracy, and sensorimotor skills. Cerebral and cerebellar dysfunction reported in chronic abusers of toluene, as well as hepatic and renal function changes. Oral administration to mice at doses of 260 mg/kg has increased embryonic lethality, 434 mg/kg has decreased fetal weight and 867 mg/kg has increased the incidence of cleft palate.	No evidence of carcinogenicity.	Not genotoxic in various assays by many investigators. No reports of teratogenic effects to humans.

TABLE 41

TOXICITY SUMMARIES FOR CONTAMINANTS DETECTED AT THE ALCOA WASTE SITE, RIVERDALE, IOWA (Continued)

Contaminant	Acute Toxicity Summary	Chronic Toxicity Summary	Carcinogenic Potential	Other Effects
Trichloroethene	Manifestation of TCE exposure in CNS depression is demonstrated by dizziness, headache, visual disturbances, incoordination similar to that induced by alcohol, tremors, sleepiness, nausea, and vomiting. Cardiac arrhythmias and death due to ventricular fibrillation and cardiac arrest from acute exposure above 15,000 ppm. Accidental ingestion of about 150 ml resulted in acute kichey failure, and liver and cardiovascular damage. Iccal exposure to TCE vapors may cause irritation to eyes, nose, throat.	Prolonged compational exposure to vapors (200 to 400 ppm) resulted in CNS symptoms including headache, dizziness, tremors, sleepiness, fatigue, and vomiting. These symptoms were reversible. Lower exposures (100 to 200 ppm) to humans resulted in biochemical changes in liver function. In test animals, chronic exposure induces low to moderate liver and kidney toxicity. Prolonged exposures to test animals at levels greater than 2,000 mg/m³ resulted in renal toxicity, hepatotoxicity, and neurotoxicity.	Has produced increase in heptacellular carcinomas in mice after oral administration. Other tests with mice and rats haveproduced negative results. Human epidemiological data are inconclusive.	Mutagenic in some bac- terial test systems.
Vinyl chloride	At high levels, CNS effects cocur, including dizziness, headaches, euphoria, narcosis death. Iower doses have resulted in ataxia, congestion, and edema in lungs, and hyperemia in liver.	Reported chronic toxicity symptoms of workers include hepatotoxicity, acro-osteolysis, CNS disturbances, pulmonary insufficiency, cardiovascular toxicity, and gastrointestinal toxicity.	Liver angiosarcomas as well as tumors of the brain, lung, hematopoietic tissues, and lymphopoietic tissues have been associated with compational exposure. Vinyl chloride is reported to be carcinogenic in rats, mice and	Mutagenic in bacterial and mammalian cell test systems. Equi-vocal evidence of possible teratogenic or reproductive effects. hamsters.

TABLE 42

Excess Lifetime Cancer Risk and Hazard Indices Associated with Water Skiing in Affected Water, Alcoa Waste Site, Riverdale, Iowa.

Contaminant		SWED [a] (mg/kg/day)	Cancer Potency Factor (mg/kg/day)	Acceptable Daily Dose (mg/kg/day)	Excess Lifetime Cancer Risk [b]	Hazard Index [c]
Vinyl chloride		1.2E-09	2.3E+00	1.3E-03	2.7E-09	9.0E-07
1.2-Dichloroethene	•	3.3E-09	-	1.0E-02	_	3.3E-07
Other chlorinated VOCs	[d]	4.3E-10	1.1E-02	7.4E-03	4.8E-12	5.9E-08
Toluene	• •	1.7E-10	_	3.0E-01	_	5.6E-10
Tetrachloroethene		3.2E-10	5.1E-02	1.0E-02	1.6E-11	3,2E-08
1,1,1-Trichloroethane		1.8E-11	_	9.0E-02	_	2.0E-10
Benzene		2.4E-11	7.0E-04	2.9E-02	1.7E-14	8.2E-10
PCBs		7.6E-09	7.7E+00	1.0E-04	5.8E-08	7.6E-05
				Total	6.1E-08	7.7E-05

[[]a] SWED is short-term worst case surface water exposure dose (From Table XI.A).

[[]b] Excess lifetime cancer risk = SWED x cancer potency factor.

[[]c] Hazard index = SWED/acceptable daily dose.

[[]d] Toxicity values for trichloroethene are used for other chlorinated VOCs. mg/kg/day Milligrams per kilogram per day.

TABLE 43

Excess Lifetime Cancer Risk and Hazard Indices Associated with Affected Air,
Alcoa Waste Site, Riverdale, Iowa

Contaminant	Exposure Dose [a] (mg/kg bw/day)	Cancer Potency Factor (mg/kg bw/day)[-1]	Acceptable Dose (mg/kg bw/day	Excess Lifetime)Cancer Risk [b]	Hazard Index [c]
Vinyl chloride	6.5E-07	3.0E-01	1.3E-03	1.9E-07	5.0E-04
1,1-Dichloroethane	5.6e-08	9.1E-02	1.0E-01	5.1E-09	5.6E-07
1,2-Dichloroethene	6.0E-07	_	1.0E-02	-	6.0E-05
Chloroform	9.1E-07	8.1E-02	1.0E-02	7.3E-08	9.1E-05
Bromodichloromethane[d]] ' 1.5E-07	8.1E-02	1.0E-02	1.2E-08	1.5E-05
Trichloroethene	5.8E-07	1.3E-02	7.4E-03	7.6E-09	7.9E-05
Tetrachloroethene	1.5E-05	3.3E-03	1.0E-02	4.9E-08	1.5E-05
			Total	3.4E-07	2.2E-03

- [a] Exposure dose from Table X1.B.
- [b] Excess lifetime cancer risk = Exposure dose x cancer potency factor.
- [c] Hazard index = Exposure dose/acceptable dose.
- [d] Chloroform values (cancer potency factor and acceptable dose) were used for bromodichloromethane.

TABLE 44

TOXICITY OF SELECTED PCBS TO AQUATIC ORGANISMS.

Acute Toxicity Species	Aroclor_	Bioassay Test <u>Length</u> <u>IC</u>	(ug/1)	Reference
Channel catfish	1248	4 days	6,000	Stalling & Mayer, 1972
Channel catfish	1254	4 days	12,000	Stalling & Mayer, 1972
Bluegill sunfish	1248	4 days	278	Stalling & Mayer, 1972
Bluegill sunfish	1254	4 days	2,740	Stalling & Mayer, 1972
Channel catfish (egg to larvae)	1242	4 days	4.2	Birge et al., 1978
Channel catfish (egg to larvae)	1254	4 days	1.8	Birge et al., 1978
Redear sunfish (egg to larvae)	1242	4 days	3.6	Birge et al., 1978
Redear sunfish (egg to larvae)	1254	4 days	0.5	Birge et al., 1978
Fathead minnow (egg to larvae)	1254	4 days	7.7	Nebeker et al., 1974
Amphipod	1248	4 days	29 - 52	Mayer et al.,1977
Damselfly	1242	4 days	400	Nebeker & Puglisi, 1974 Mayer et al., 1977
Damselfly	1254	4 days	200	Mayer et al., 1977
Leopard Frog (egg to larvae)	1242	4 days	2.1	Birge et al., 1978
Leopard Frog (egg to larvae)	1254	4 days	1.0	Birge et al., 1978

TABLE 44

TOXICITY OF SELECTED PCBS TO AQUATIC ORGANISMS.

(Continued)

Sub-Chronic Toxicity				
Channel catfish	1242	15 days	107	Stalling & Mayer, 1972
Channel catfish	1248	15 days	127	Stalling & Mayer, 1972
Channel catfish	1254	15 days	741	Stalling & Mayer, 1972
Channel catfish	1248	30 days	75	Mayer et al., 1977
Bluegill sunfish	1242	15 days	54	Stalling & Mayer, 1972
Bluegill sunfish	1248	30 days	78	Mayer et al., 1977
Bluegill sunfish	1254	15 days	204	Mayer et al., 1977
Fathead minnow (egg to larvae)	1248	30 days	4.7	DeFoe et al., 1978
Cladoceran	1248	14 days	2.6	Nebeker & Puglisi, 1974
Cladoceran	1254	14 days	1.8	Nebeker & Puglisi, 1974
Chronic Toxicity				
Fathead minnow	1248	Life-cycle	0.2[a]	DeFoe et al., 1978
Amphipod	1248	Life-cycle	3.3[a]	Nebeker et al., 1974
Cladoceran	1254	Life - cycle	2.1[a]	Nebeker & Puglisi, 1974
Cladoceran	1248	Life-cycle	4.3[a]	Nebeker & Puglisi, 1974
Midge	1254	Life-cycle	0.8[a]	Nebeker & Puglisi, 1974

[[]a] Chronic values as cited in USEPA, 1980. ug/l Micrograms per liter.

Appendix A Soil Boring Lithology Logs

A-I Waste Site Borings

A-II Bedrock Borings

A-III Building Expansion Borings

A-IV Production Well Logs

								L	OG OF E	ORING	G NO.	GMB-1	
0	WNE	R									HITECT-EN		
İ	ALC	OA			•					G	ERAGHTY :	S MILLER, INC.	
S	ITE									PRO	JECT NAME		
ŀ	RIVI	ERDA	LE,	I OWA						А	LCOA MON	ITORING WELLS	
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft. ³	Unified Class. Symbol	Depth	Elevation		Description	
	PA												
1	ss	18	8	50								FILL - SAND, G	
2	ss	18	10	22	1 1							CINDERS,	E AND
3	SS	18	5	26					5_			Gray and Dark	Gray
4	ss	18	4	8			<u> </u>			ļ			
-	100				 			-	=		$\frac{(7.5)}{(8.2)}$	CEE NOTE #1	
5_	SS PA	18	. 16	35			ļ	-	=		(9.0)	SEE NOTE #1 SEE NOTE #2	
				-					10	İ		Bottom of Bori	na @ 9.0'
•						,							
							l					Auger Refusal	@ 9.0'
									15			NOTE #1: CLAYEY SILT, T Brown	RACE SAND,
									20 —			NOTE #2: WEATHERED LIME Gray	STONE,
									25				
									30 -				
<u> </u>	1_	<u> </u>			<u> </u>	<u> </u>	1	_			<u></u> _		
							ROXIMATE	BOUNI	DARY LINES B	ETWEEN S	DIL AND ROCK T	YPES: IN-SITU, THE TRANSITION	
_					ERVATIO			_	· ^			BORING STARTED	2/6/81
W.		one	w.5.	OR W.		A.C.	.B.		acon Cor apids Daven			BORING COMPLETI	,
W.I			-	B.C.	к.	A.C.	٠٨.		Kansas City			RIG Mobile B53 APPROVED TAS	JOB # 780607

_								L	OG OF B	ORIN	G NO.	GMB-2
0	WNEF	₹					 -			l l	HITECT-EN	GINEER
	ALCO	DA										MILLER, INC.
ŀ	TE O I VE	- D D A		10114							JECT NAME	
 	RIVE		LE,	AWOI					Т	1 4	LCUA MUN	ITORING WELLS
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft.³	Unified Class. Symbol	Depth	Elevation		Description
	HS								=	ļ		
1	SS	18										
2	SS	18										CLAYEY SILT, TRACE GRAVEL,
3	SS								5_			SILT, TRACE CLAY, FINE TO MEDIUM SAND, Dark Gray and Black
4	SS	18				i			,			bark dray and brack
5	SS	18										
6	SS	15		30/2"					10		(9.5)	
Ľ	HS								10		(10.5)	WEATHERED LIMESTONE, Gray
									15			Bottom of Boring @ 10.5' Auger Refusal @ 10.5' PVC and Screen set 2/14/81.
	n	HE STR.	ATIFICA	TION LINES	REPRESEN	THE APPI	ROXIMATI	E BOUNG	20	ETWEEN S		redrilled 2/14/81.
					ERVATI				 			BORING STARTED 2/9/81
W.	L. No	one	W.S	OR W.	D. Nor				acon Cor			BORING COMPLETED 2/9/81
W.I				B.C.	R.	A.C.	R. C	edar R	lapids Daven Kansas City		Moines, IA KS	RIG Mobile B53 FOREMAN JAF

					i		 	L	OG OF E	BORIN	G NO. GI	MB-3
0	WNE	र									HITECT-EN	GINEER
<u> </u>	ALC	OA			· ·				·			MILLER, INC.
S	TE	15 D D	۸۱ ۳	10144							DJECT NAME	•
-	KIV		ALE,	AWOI					г	AL	CUA MUNI	TORING WELLS
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- ibs./ft.3	Unified Class. Symbol	Depth	Elevation		Description
	HS	_							=	٠		
1	SS	18	15	7					三			LAYEY SILT, TRACE SAND, ark Gray
2	SS	18	15	12)	ark didy
3	SS	18	18	12					5-		·(5•5)	LIMESTONE @ 5.4'
											Во	ottom of Boring @ 5.5'
									5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Aı	uger Refusal @ 5.5'
									=		8' PVC	and Screen Set 2/14/81.
							•					
									, =		ļ	
	<u> </u>								'' =			
]											}	•
							}		1 =	•		
									20-		}	
		ł					·		1 3			
			ļ						===		1	
		1		ļ ·					=			
	1		1						25			
					1	Ì] =			
		İ		1	1		1		=====================================			
									7			
}									30_			
								.				
							Į.	1				
<u></u>				<u> </u>	1.	<u> </u>					<u> </u>	
	Th	HE STR	ATIFICAT	TION LINES	REPRESENT	THE APPR	OXIMATE	BOUND	DARY LINES B	ETWEEN S	OIL AND ROCK T	YPES. IN-SITU. THE TRANSITION MAY BE GRADUAL
	WAT	rer	LEVE	L OBS	ERVATIO	ONS						BORING STARTED 2/9/81
W.L	5	.4	W.S.	OR W.		5.4A.			acon Cor			BORING COMPLETED 2/9/81
W.L	<u> </u>			B.C.	R.	A.C.	R. C	edar R	apids Daven Kansas City		Moines, IA KS	RIGMobile B53 FOREMAN JAF

								L	OG OF B	BORIN	G NO.	GMB-4	
OV	WNEF									1	CHITECT-EN		
		LCOA										& MILLER, INC.	
31	TE R I	IVER	DALE	E, 10W	Α						LCOA MON	IE NITORING WELLS	Į
		1						\Box					
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft.3	Unified Class. Symbol	Depth	Elevation		Description	·
	нѕ											CLAYEY SILT, T	RACE SAND
1	SS	18	8	11		l			日日		1	AND ORGANICS, Dark Gray	
2		15		40/5"					日日		(3.7)	LIMESTONE @ 3.	6'
									5			Bottom of Bori	
									=			Auger Refusal (@ 3.7'
	•								5 11 11 11 11 11 11 11		6.5'	PVC and Screen S	et 2/14/81.
]				
	ł												
									15				
	İ												
	l												
		-							[]				
	ĺ								-==	ı			
	l									ı			
	1								25 —	ı			1
						}			=				
	ł						}			į			
									βο —				ļ
													٠.
	<u> </u>	1_	<u> </u>		<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>		
	n	HE STR	ATIFICA	TION LINES	REPRESENT	THE APP	ROXIMATE	E BOUND	DARY LINES B	ETWEEN S	SOIL AND ROCK	TYPES: IN-SITU. THE TRANSITION	MAY BE GRADUAL
					ERVATIO			_	_			BORING STARTED	2/9/81
W.L	+	one	W.S.	OR W.		ne A A.C	.B. c		acon Cor		nts, Inc. Moines, IA	RIG Mobile B53	
W.L				B,C.	<u>k.</u>	A.C	.K.		Kansas City				108 # 780607

		<u>—</u>		- 	 _			L	OG OF B	ORIN	G NO. G		
0	WNE	R	·							ARC	HITECT-EN	GINEER	
	ALC	0A								G	ERAGHTY	& MILLER, INC.	_
S	ITE									PRO	JECT NAMI	E	
	RIV	ERDA	LE,	IOWA	·		, 			<u> </u>	LCOA MON	ITORING WELLS	
Sample No.	Type Sample	Sampling Distance	Recovery		Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft.3	Unified Class. Symbol	Depth	Elevation		Description	
1	SS	18	5	50/51									
2	SS	18	12	34					. =			FILL - SAND, GR	
3	ss	18	16	22								CONCRETE RUBBLE	
	133	'					 		=			Gray and Dark G	ray
4	SS	18	10	15			ļ	ļ	5				
5	SS	18	3	12			}		=				
6	ss	18	16	22					==		(8.5)		
<u> </u>	66	,,	1.1.	1.3				_	=			CLAYEY SILT, TR	ACE SAND,
7	SS	18	14	13			-	 	10—		(10.1)	Dark_Gray	
8	ss	18	2	70/21			<u> </u>	<u> </u>	l ∃		(11.5)	WEATHERED LIMES	TONE, Gray
												Bottom of Borin	g @ 11.5'
									15—			Auger Refusal @	11.5'
								1			14' P\ Hole r	/C and Screen Se redrilled 2/14/8	et 2/14/81. 31.
									20 =				
									25				
									30 —				
				1									
		HE STR	ATIFICA	TION LINES	REPRESENT	THE APP	ROXIMATE	BOUNG	DARY LINES B	ETWEEN S	OIL AND ROCK T	YPES: IN-SITU. THE TRANSITION	MAY BE GRADUAL
	WA	TER	LEVE	L OBS	ERVATIO	ONS						BORING STARTED	2/6/81
w.	L. N	one	W.S.	OR W.			.В.		acon Cor			BORING COMPLETE	
W.				B.C.	R.	A.C	.R. C	edar R	apids Daven Kansas City		Moines, IA KS	RIG Mobile B53	
W.	L.]											APPROVED TAS	JOB # 780607

								L	OG OF B	ORIN	G NO.	GM-2
0	WNE										HITECT-EN	GINEER
		COA								1		' & MILLER, INC.
S	TE R I	VFRI	DALF.	, 10W	. Δ					PRO	DJECT NAME	E ONITORING WELLS
		··	7									
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft. ³	Unified Class. Symbol	Depth	Elevation		Description
	PA											
1	SS	18	18	26								FILL - SILT, TRACE CLAY AND SAND, CINDERS, RUBBLE,
2	SS	18	18	14								CONCRETE AND LIMESTONE,
3	ss	18	6	63								Brown
4	SS.	18	18	22]		(6.8)	
5	SS	18	18	12								
<u>-</u> 6	SS	18	18	3				1	10			SILTY FINE SAND WITH
			<u> </u>						10—			OCCASIONAL LIMESTONE CHUNKS,
<u>7</u> 8	SS SS	18 18	18 6	11			ļ	├				Dark Gray
-	<u> </u>	10	0	14			-				(13.0)	MEATHERED I INCCTONE COOK
	PA							-	15_		(14.0)	WEATHERED LIMESTONE, Gray
				:					15			Bottom of Boring @ 14.0'
									=			Auger Refusal @ 14.0'
									20			PVC and Screen Set 2/14/81
							İ				Hole	redrilled 2/14/81.
		<u> </u>										
								1				·
									25			
				ļ		 	1		=			
				<u> </u> 								
				ļ								
									30			
									=			•
								<u></u>		_		
	n	1E STR	ATIFICAT	ION LINES	REPRESENT	THE APPI	POXIMATE	BOUNE	DARY LINES BE	ETWEEN S	SOIL AND ROCK T	YPES: IN-SITU. THE TRANSITION MAY BE GRADUAL.
	1 -				ERVATIO			_				BORING STARTED 2/6/81
<u>w.r</u>		.0	W.S.	OR W.		0 A.			acon Con apids Daveni			BORING COMPLETED 2/6/81 RIG Mobile B53 FOREMAN JAF
W.L	+			B.C.	K.	. A.C.	κ.		Kansas City			APPROVED TAS JOB # 780607

									0C 0E F	COLIN	C NO		·_
·	WNEI	₹							Ju Ur E		G NO. GM		
	ALCO									1		MILLER, INC.	
	TE								·		DJECT NAME		
	RIVE	RDA	LE,	AWO I	· · · · · ·					. i		TORING WELLS	
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft.²	Water Content-%	Dry Density- Ibs./ft. ³	Unified Class. Symbol	Depth	Elevation		Description	
	PA												
1	SS	18	18	27					三			FILL - SAND, GR	
2	SS	18	18	33								SILT, TRACE CLA SLUDGE, PROCESS Gray, Dark Gray	ING WASTE,
3	SS	18	18	5			<u> </u>		>		((7)		
4	SS	18	10	27			<u> </u>		\exists		(6.7)	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
5	ss	18	3	33			<u> </u>					WEATHERED LIMES	TONE,
6	SS	18 -2	3	5 -28/21					10_=		(10 1)	Gray .	
	SS PA			20/2						f	(10.4)		
									15			Bottom of Borin Auger Refusal @	
									20			PVC and Screen edrilled 2/14/8	
									25				
									30 =				
	<u></u> _				9580505	<u> </u>	POV::::=				FOIL AND BOSS T	VDEC IN CITIL THE TRANSFERMAN	MAY RE GRADUAL
					ERVATIO		HOXIMATI	BOUNG	JARY LINES E	LIWEEN S	WIL AND ROCK T	BORING STARTED	2/6/81
W.I		.5		OR W.			.в.	Terr	acon Co	nsultan	its, Inc.	BORING COMPLETE	
W.L		- <i></i>		B.C.		A.C	— ,			port Des	Moines, IA	RIG Mobile B53	FOREMAN JAF
W.L	T											APPROVED TAS	JOB # 780607

				·				L	OG OF B	ORIN	G NO.	6M -4	
	WNE							•		1	HITECT-EN		
	ALCO	Α										MILLER, INC.	
	TE		_							1	JECT NAME		
<u>F</u>	RIVE		LE,	I OWA				,		ALC	COA MONIT	ORING WELLS	
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- lbs./ft.³	Unified Class. Symbol	Depth	Elevation		Description	
	HS										4" Crus	hed Limestone	
1	SS	18	12	19					=				
2	SS	118	16	19									
3	SS	18							1111			CLAYEY SILT, TAND LIMESTONE Brown	
4	SS	18	6	32/3	_							PLOMI	
5	SS	18	16	15									
			\vdash		-	-		-					
6	SS	18	14	8				-	+1()		(10.3)		
7	SS	18	15	8							(11.1)	FINE SAND, TRA	ACE GRAVEL, Br
8	SS	18	12	9									
 9	SS	18	12	5		<u> </u>		1				SILT, TRACE CL Gray Brown	AY AND SAND,
0	SS	18	6	3	 			 				·	
	55	10		-87T	-			_	'		(16.5)	LIMESTONE @ 16	5.1'
,									20		-	Bottom of Bori Auger Refusal	
			}			1	1				19 51	PVC and Screen	Sat 2/14/81
							}		25		Ï	edrilled 2/14/8	
						<u> </u> 					11010 1	Cd1111Cd 27147C	,
			}		}		}						
									30				
						1			=				
	• т	HE STR	ATIFICAT	ION LINES	REPRESENT	THE APP	OXIMATE	BOUNE	DARY LINES BI	ETWEEN S	OIL AND ROCK TO	PES: IN-SITU, THE TRANSITION	MAY BE GRADUAL
	WA	TER	LEVE	L OBSI	ERVATIO	ONS					 	BORING STARTED	2/9/81
W.L			W.S.	OR W.			В.		acon Cor			BORING COMPLETE	
W.L				B.C.		A.C.	R.	egar A	apids Daven Kansas City		Moines, IA . KS	RIGMobile B53 APPROVED TAS	FOREMAN JAF

		<u> </u>						1.0	OG OF E	BORIN	G NO	GM-5
0	WNE	R	·		_			-			HITECT-EN	
	ALO				•							MILLER, INC.
SI	TE							_		PRO	DJECT NAM	Ε
L	RIV	VERD	ALE,	10WA				,		AL	COA MONI	TORING WELLS
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft.²	Water Content-%	Dry Density- Ibs./ft. ³	Unified Class. Symbol	Depth	Elevation		Description ,
	HS								\exists			
1	SS	18	16						=			
2	SS	18	10									
			10					<u> </u>	===			FILL - SILT, LITTLE CLAY, TRACE SAND AND LIMESTONE
3	SS		18	1,6 1=0				 	5 1111			PIECES,
4	SS		ı I	46/5"				-				Brown and Dark Brown
5	SS		2					<u> </u>				
6	SS	18	6				····		10 _=			
7	ss	18	6								(12.0)	
8	SS	18	12					}	_=			SILT, TRACE CLAY AND SAND,
9	SS RB		7						\exists		(13.5)	Gray
RUN 1 RUN 2	DB				% Rec				20		(30.0)	WEATHERED LIMESTONE, Gray
					·							Continued On Sheet #2
	T	HE STRA	ATIFICA	TION LINES	REPRESENT	THE APPR	ITAMIXO	BOUNG	DARY LINES E	ETWEEN S	OIL AND ROCK T	YPES: IN-SITU. THE TRANSITION MAY BE GRADUAL
		TER	LEVE	L OBS	RVATIO	ONS	\Box		-			BORING STARTED 2/9/81
W.L	+	ne	W.S.	OR W.I		A.	— .		acon Coi		its, inc.	BORING COMPLETED 2/16/81
W.L		.t.c.	1.55	B.C.I		A.C.	R.	rauer M	Kansas City			RIG Mobile B53 FOREMAN JAF APPROVED TAS JOB # 780607
W.L	W a	ıcer	LOS	5 (0) 5	0.0'		1					APPROVED TAS JOB # 780607

		-						L	OG OF B	ORIN	G NO.	GM-5 (Continued)
0	WNE	₹									HITECT-EN	
	ALC	DA_				<u>.</u>				•		& MILLER, INC.
	TE R I VI	ERDA	LE,	IOWA							DJECT NAM LCOA MON	E IITORING WELLS
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft.²	Water Content-%	Dry Density- Ibs./ft. ³	Unified Class. Symbol	Depth	Elevation		Description
									30 =		(30.0)	Continued From Sheet #1
RUN 2	DB	120	120	100	% Red	overy	·		mlm			WEATHERED LIMESTONE,
RUN 3	DB	108	108	100	% Reco	very			35 ————————————————————————————————————		(43.1)	
						·			55 1		22' P	Bottom of Boring VC and Screen Set 2/16/81. redrilled 2/16/81. creen Used
-	<u></u>	HE STR	ATIFICAT	TION LINES	REPRESENT	THE APP	ROXIMATE	BOUNT	DARY LINES BI	ETWEEN S	OIL AND ROCK T	TYPES: IN-SITU, THE TRANSITION MAY BE GRADUAL
-					ERVATION							BORING STARTED 2/9/81
\	Tu			CB W				_			to Inc	BORING COMPLETED 2/16/81

Cedar Rapids Davenport Das Moines, IA

Kansas City Wichlta, KS

W.L

B.C.R.

Water Loss @ 38.01

A.C.R.

FOREMAN JAF

JOB # 780607

RIG Mobile B53

APPROVED TAS

ARCHITECT-ENGINEER GERAGHTY & MILLER, INC.				-					L	OG OF E	BORIN	IG NO. GM- 6
PROJECT NAME	01			•							ARC	CHITECT-ENGINEER
RIVERDALE, 10WA ALCOA MONITORING WELLS Description Des			COA									
Possible Natural Below 5.5 Possible Natur	SI		/E D N	A I E	1004							_
HS		17.1		766,	10W/	· 				· 		T TOWN TOWN TOWN WELLS
SS 18 7 50	Sample No.		Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./tt. ²	Water Content-%	Dry Density- Ibs./ft.3	Unified Class. Symbol	Depth	Elevation	Description
S 18 12 41	_											
SS 18 10 51	1	SS	18	7	50							
SS 18 10 51	2	ss	18	12	41							
S SS 18 10 9	3	SS	18	10	51	}				5		
S SS 18 10 9										Í		
7 SS 18 10 20												
7 SS 18 10 20									-	\exists		
7 SS 18 10 20 8 SS 18 12 25 9 SS 18 16 8 0 SS 18 16 5 15 S	6	SS	18	10	12				<u> </u>	1		Possible Natural Below 5.5'
SILT, TRACE CLAY AND SAND Gray (16.5) LIMESTONE @ 16.1' Bottom of Boring @ 16.5' Auger Refusal @ 16.5' 19.5' PVC and Screen Set 2/14/81 Hole redrilled 2/14/81. THE STRATEPICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES INSTITUTHE TRANSITION MAY BE GRADUAL WATER LEVEL OBSERVATIONS N.L. W.S. OR W.D. A.B. SILT, TRACE CLAY AND SAND GRAY (16.5) Auger Refusal @ 16.5' Auger Refusal @ 16.5' BORING STATED 2/9/8 BORING STATED 2/9/8 BORING COMPLETED 2/9/8 RIGMOBILE BS3 FOREMAN J. RIGMOBILE BS3 FOREMAN J.	7	SS	18	10	20							
SILT, TRACE CLAY AND SAND Gray (16.5) LIMESTONE @ 16.1' Bottom of Boring @ 16.5' Auger Refusal @ 16.5' 19.5' PVC and Screen Set 2/14/81 Hole redrilled 2/14/81. THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES INSITU. THE TRANSITION MAY BE GRADUAL WATER LEVEL OBSERVATIONS N.L. W.S. OR W.D. A.B. SILT, TRACE CLAY AND SAND Gray (16.5) LIMESTONE @ 16.1' Bottom of Boring @ 16.5' Auger Refusal @ 16.5' Hole redrilled 2/14/81. SINT. THE TRANSITION MAY BE GRADUAL BORING STARTED 2/9/8 BORING COMPLETED 2/9/8 RIGMOBILE B53 FOREMAN J. RIGMOBILE B53 FOREMAN J.	8	SS	18	2	25				İ			(13.2)
O SS 18 16 5 T SS T T BOUNCING 15	9	SS	18	16	8							
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES IN-SITU. THE TRANSITION MAY BE GRADUAL WATER LEVEL OBSERVATIONS M.L. W.S. OR W.D. A.B. V.L. B.C.R. A.C.R. WATER LEVEL OBSERVATIONS M.L. W.S. OR W.D. A.B. Terracon Consultants, Inc. Cedar Rapids Devenoor Dis Monies, IA RIGHODITE B53 FOREMAN J. RIGHODITE B53 FOREMAN J. RIGHODITE B53 FOREMAN J.	0			 -	5					15		Gray
Auger Refusal @ 16.5' 19.5' PVC and Screen Set 2/14/81 Hole redrilled 2/14/81. 25 ———————————————————————————————————					Roun	eing -			+	1 =		(16.5) LIMESTONE @ 16.1'
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL WATER LEVEL OBSERVATIONS N.L. W.S. OR W.D. A.B. V.L. B.C.R. A.C.R. Terracon Consultants, Inc. Cedar Rapids Davenport Dis Moines. IA Kansas City Wichila KS RIG MOBILE B53 FOREMAN J. RIG MOBILE B53 FOREMAN J.												
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL WATER LEVEL OBSERVATIONS N.L. W.S. OR W.D. A.B. Cedar Rapids Davenport Des Moines, IA Kansas City, Wichita KS RIG Mobile 853 FOREMAN J.										20		
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL WATER LEVEL OBSERVATIONS N.L. W.S. OR W.D. A.B. Cedar Rapids Davenport Des Moines, IA Kansas City, Wichita KS RIG Mobile 853 FOREMAN J.			-									
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL WATER LEVEL OBSERVATIONS N.L. W.S. OR W.D. A.B. Terracon Consultants, Inc. Cedar Rapids Davenport Dês Moines, IA RIGMOBILE B53 FOREMAN J. RIGMOBILE B53 FOREMAN J.												
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL WATER LEVEL OBSERVATIONS W.L. W.S. OR W.D. A.B. Terracon Consultants, Inc. Cedar Rapids Davenport Dês Moines, IA Kansas City, Wichita KS RIG MOÈ I le 853 FOREMAN J.						}]	Ì				Hole redrilled 2/14/81.
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL WATER LEVEL OBSERVATIONS W.L. W.S. OR W.D. A.B. Terracon Consultants, Inc. Cedar Rapids Davenport Dês Moines, IA Kansas City, Wichita KS RIG MOBÎ LE B53 FOREMAN J.							<u> </u>			²⁵ —		
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL WATER LEVEL OBSERVATIONS W.L. W.S. OR W.D. A.B. Terracon Consultants, Inc. Cedar Rapids Davenport Dês Moines, IA Kansas City, Wichita KS RIG MOBÎ LE B53 FOREMAN J.							,		ļ			
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL WATER LEVEL OBSERVATIONS W.L. W.S. OR W.D. A.B. Terracon Consultants, Inc. Cedar Rapids Davenport Dês Moines, IA Kansas City, Wichita KS RIG MOBÎ LE B53 FOREMAN J.						Ì						
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL WATER LEVEL OBSERVATIONS W.L. W.S. OR W.D. A.B. Terracon Consultants, Inc. Cedar Rapids Davenport Dês Moines, IA Kansas City, Wichita KS RIG MOBÎ LE B53 FOREMAN J.										\exists		
WATER LEVEL OBSERVATIONS W.L. W.S. OR W.D. A.B. Terracon Consultants, Inc. Cedar Rapids Davenport Dês Moines, IA Kansas City, Wichita KS RIG MOBÎ I e B53 FOREMAN J.							j			PO		
WATER LEVEL OBSERVATIONS W.L. W.S. OR W.D. A.B. Terracon Consultants, Inc. Cedar Rapids Davenport Dês Moines, IA Kansas City, Wichita KS RIG MOBÎ I e B53 FOREMAN J.												
WATER LEVEL OBSERVATIONS W.L. W.S. OR W.D. A.B. Terracon Consultants, Inc. Cedar Rapids Davenport Dês Moines, IA Kansas City, Wichita KS RIG MOBÎ I e B53 FOREMAN J.												<u></u>
W.L. W.S. OR W.D. A.B. Terracon Consultants, Inc. B.C.R. A.C.R. Terracon Consultants, Inc. Cedar Rapids Davenport Dês Moines, IA Kansas City, Wichita, KS RIG MOB I le B53 FOREMAN J.		ת	E STR	ATIFICAT	TION LINES	REPRESENT	THE APPR	OXIMATE	BOUNG	DARY LINES B	ETWEEN S	SOIL AND ROCK TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL.
V.L. B.C.R. A.C.R. Cedar Rapids Davenport Des Moines, IA Kansas City, Wichita KS RIG MOBITE B53 FOREMAN J.		WA	ER	LEVE	L OBS	ERVATIO	ONS			· · · · · · · · · · · · · · · · · · ·		
V.L. B.C.R. A.C.R. Kansas City Wichita KS		+		W.S.		-		⊸ .				
	W.L W.L				B.C.	R.	A.C.	R.	eqar R			IKIGIODITE DOS FOREMAN JA

					<u> </u>			1.0	OG OF E	RORIN	G NO CH		
0	WNEI	₹									CHITECT-ENGI	1-7	
		.COA								1		MILLER, INC.	
SI	TE					<u>-</u> -					DJECT NAME		
	R	VER	DALE	, 10W	A					A	LCOA MONIT	ORING WELLS	
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft.²	Water Content-%	Dry Density- Ibs./ft.3	Unified Class. Symbol	Depth	Elevation		Description	
	HS												
1	SS	18	6	60/5''									
2	SS	18	18	30					=		F	ILL - SILT, T	RACE CLAY
3	SS		16	23					5—		<u> </u>	ITH LIMESTONE Brown	
4	SS	18	18	30									
5	SS	18	10	52									
6	SS	18	10	37								•	
				 			ļ		10				
7	SS			42/4"	ļ 			 			(11.5)	<u> </u>	
8	SS	18	4	11								CLAYEY SILT, T	RACE SAND,
9	SS	18	3	8							(15.0)	Brown	•
10	SS	18	18	4					15			CLAYEY SILT, T	RACE SAND. Gr
11	·SS	18	8	20/2	1							VEATHERED LIME	
-												Bottom of Bori	
									20		ļ ,	Auger Refusal (@ 17.3'
		-											
					İ	•	l				20' PVC	and Screen Se	et 2/14/81.
]										i	drilled 2/14/8	
									25			2,,,,,,,	
				ļ.			İ						
									30				
									=				
] .	1	<u> </u>								
							ROXIMATI	E BOUND	DARY LINES E	ETWEEN S		ES: IN-SITU, THE TRANSITION	
W.L		ER		OR W.	ERVATIO		В.	Terr	acon Co	ngultar	⊢	BORING STARTED BORING COMPLETE	2/12/81 D 2/12/81
W.L	┥—			B.C.		A.C.	 1 ,		apids Daver	port Des	Moines, IA	RIG Mobile B53	FOREMAN JAF
W.L	.1								Kansas City	wichita,	NS A	APPROVED TAS	JOB # 780607

			-					1 /	OG OF B	ODIN	IG NO. GM-8 ε 8p
0	WNE			,,					JG OF B		CHITECT-ENGINEER
	ALCO									1	ERAGHTY & MILLER, INC.
	TE										DJECT NAME
	RIVE	RDL	AΕ,	I OWA						A	LCOA MONITORING WELLS
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft.²	Water Content-%	Ory Density- lbs./ft.³	Unified Class. Symbol	Depth	Elevation	. Description
	HS								=		
1	SS	18	5	50/5							
2	SS	18	18	24							
3	SS SS	18 18	14						5-1		FILL - SILT, TRACE CLAY WITH LIMESTONE RUBBLE,
								-	二		Brown
<u>5</u>	SS	18	14					├			(Red Brown Clayey Silt Layer 5.0' to 6.0')
0	SS	18	10	15				<u> </u>	10		·
7	SS	18	12	7				<u> </u>			(Numerous Sand Layers)
8	ST	24			·						(14.4)
9	SS	18	16			! 			15		
10	-	12	12	3				 			CLAYEY SILT, TRACE SAND, Gray
11	 - -		17	6				 	▎ᅼ		
	SS		\		ļ						(10.7)
13	SS	18	9	30/5'	<u> </u>		<u> </u>	<u> </u>	20		(19.7)
RUN 1	DB	86	86	1 0 0 %	Reco	ery			25		WEATHERED LIMESTONE, Gray (28.2)
									30-	<u> </u>	Bottom of Boring @ 28.2' 28' PVC and Screen Set 2/17/81. Hole 8D drilled 2/17/81. 10' Screen used.
	THE STRATIFICATION LINES REPRESENT THE APPRO				ROXIMATE	BOUNE	DARY LINES B	ETWEEN S	SOIL AND ROCK TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL		
	WATER LEVEL OBSERVATIONS										BORING STARTED 2/13/81
W.L	.L. B.C.R. A.C.R							acon Cor apids Daven			
W.L	B.C.R. A.C.I						·K.		Kansas City	Davenport Des Moines, IA s City Wichita, KS RIG Mobile B53 FOREMAN JAF APPROVED TAS JOB # 780607	

									OG OF F	POPIN	G NO. G	M_RA
 	WNE								<u> </u>		CHITECT-EN	
•	ALCO/											& MILLER, INC.
	ITE	<u> </u>									DJECT NAME	
F	(I VE	RDAL	_E, i	AWO I						A	LCOA MON	ITORING WELLS
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft.3	Unified Class. Symbol	Depth	Elevation		Description
	HS								111111111111111111111111111111111111111			FILL - SILT, TRACE CLAY AND CLAYEY SILT WITH LIMESTONE, Brown
1	ST	12	12		↓		 	 '			(6.0)	
									10			Bottom of Boring @ 6.0'
	T1	THE STRATIFICATION LINES REPRESENT THE APPRI					ROXIMATI	E BOUNE	DARY LINES B	ETWEEN S	SOIL AND ROCK T	YPES: IN-SITU, THE TRANSITION MAY BE GRADUAL
-					ERVATIO							
W.L				OR W.			.В.		acon Cor			BORING STARTED 2/13/81 BORING COMPLETED 2/13/81
W.L	_			B.C.		A.C.			Falls Cedar	r Rapids (RIG Mobile B53 FOREMAN JAF
-	≒				<u>w.</u>		<u>-X-</u>		Des Mo	oines, IA	V.C	ADDROVED DOG 108 # 700(07

<u></u>								10	OG OF	RORIN	G NO G	ч- 8в	
1	WNE	R			 -				<u> </u>	_	HITECT-ENG		
	ALC						•					& MILLER, INC.	
S	ITE									PRO	DJECT NAME	· · · · · · · · · · · · · · · · · · ·	
	RIV	ERD/	ALE,	1 OWA							ALCOA MOI	NITORING WELLS	
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Ory Density- lbs./ft. ³	Unified Class. Symbol	Depth	Elevation		Description	
	нѕ								5 1		(8.0)	SILT, TRACE CL CLAYEY SILT WI LIMESTONE, Brown	<u>TH</u>
									10			Bottom of Bori	ng @ 8.0' @ 8.0'
_	·		FER LEVEL ORSERVATIONS					BOUNG	DARY LINES	BETWEEN S	· · · · · · · · · · · · · · · · · · ·		
14/		IER	ER LEVEL OBSERVATIONS W.S. OR W.D. A.B.						acon Co	nsultan	4 a 4 a a	BORING STARTED BORING COMPLETE	2/17/81 2/17/81
W.I	+-		w.5.						Falls Ceda	r Rapids	Davenport -	RIG Mobile B53	
W.t			B.C.R. A.C.F						Des M Kansas Cit	ioines, IA y Wichita,		APPROVED RGG	JOB # 780607

												0.	· · · · · · · · · · · · · · · · · · ·
								L(OG OF B		G NO.		
0	WNE										HITECT-ENG	GINEER & MILLER, INC.	•
-	TE	COA		·	•••						JECT NAME		
3		/FRC	ΔIF	I OWA						1		: ITORING WELLS	
\vdash			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1047	` 					- 		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- lbs./ft.3	Unified Class. Symbol	Depth	Elevation		Description	·
	нѕ										(7.0)	SILT, TRACE CL CLAYEY SILT WI LIMESTONE, Brown	<u>TH</u>
											(7.0)	Bottom of Bori	ng @ 7.0'
-	1	<u></u>	<u> </u>			1			<u></u>		01. 44:2 222: =	voce in city the	
		THE STRATIFICATION LINES REPRESENT THE APPROX					OXIMATE	BOUNG	DARY LINES BI	ETWEEN S	OIL AND ROCK TO		
w.t		WATER LEVEL OBSERVATIONS						Terr	acon Con	sultan	ts, Inc.	BORING STARTED BORING COMPLET	2/17/81
W.L		W.S. OR W.D. A.B.							Falls Cedar	Rapids (RIG Mobile B53	
W.L	+	B.C.R. A.C.R					Des Moines Kansas City Wic				KS	APPROVED RGG	JOB # 780607
	1						1					_ · · · · · - · · · · · · · · · · · · ·	1 / 0000/

					· · · · · · · · · · · · · · · · · · ·			1.6	OG OF F	ODIN	IG NO. GM-9
0\	WNE	₹							JG OF E		CHITECT-ENGINEER
	AL(ERAGHTY & MILLER, INC.
SI	TE					 -				PRO	OJECT NAME
	RIV	/ERD	ALE,	IOWA	·			,		AL	COA MONITORING WELLS
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./tt. ²	Water Content-%	Dry Density- Ibs./ft.3	Unified Class. Symbol	Depth	Elevation	Description
	HS										
1	SS	18	10	40/5"					\exists		
2	SS	18	18	45						ı	
3	SS	18	16	12					1		SHIT TRACE CLAY
4	SS	18	10	91					=		SILT, TRACE CLAY, SAND, AND RUBBLE
				ار ا				-	5		Dark Brown
_5	SS	18	12	21	-						
6	SS	18	5	17					n n —		
7	SS	18	6	54							
8	SS	18	10	15							(13.2)
9	SS	18	2	10					15		SANDY SILT WITH RUBBLE,
10	SS	18		7			 	 	15		(14.8) Dark Brown
11	-		18	9							CLAYEY SILT, TRACE SAND AND ORGANICS,
12	55	18	14	30/2	qı						(18.6) Gray
	SS HS			7072					20 =		(19.5) WEATHERED LIMESTONE, Gray
											Bottom of Boring @ 19.5'
				ļ			ļ		▎∄		Auger Refusal @ 19.5'
	}										
	ĺ								25		22' PVC and Screen Set 2/14/81
											Hole redrilled 2/14/81.
									=		
		1]	1		30-		
							1				
				-					=		
	<u> </u>	<u></u>	<u> </u>	.1	1	1	1	<u> </u>			<u> </u>
							ROXIMATE	BOUND	ARY LINES B	ETWEEN S	SOIL AND ROCK TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL
W.L		EK		OR W.	ERVATIO D.		В.		acon Cor		
W.L				B.C.		A.C.	—	Cedar	Falls Cedar Des Mo	r Rapids- (pines, IA	RIG Mobile B53 FOREMAN JAF
W.L									Kansas City	Wichita,	

								1 (OG OF F	ORIN	G NO. GM	-10	
 	WNE	₹					····				HITECT-EN		
	ALC									1		MILLER, INC.	
S	ITE						 				DIECT NAME		
	RIVE	ERDA	LE,	10WA						AL	COA MONI	TORING WELLS	
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft.3	Unified Class. Symbol	Depth	Elevation		Description	
<u> </u>	HS								\exists		12" Cru	shed Limestone	
1	SS	18	18	26						İ			
2	SS	18	4	8								SILT, TRACE CLAY	
									_ =			AND SAND,	
3_	SS	18	18	18					5	·		Dark Gray	
4	SS	18	18	17					\exists				
5	SS	18	18	18							(8.7)		
6	ss	18	18	10							(0.7)		
7	SS	18	18	10					10 =			CLAYEY SILT, TRACE Dark Brown	SAND,
8	SS	_	10.	8				\vdash	=			Dark Brown	
9	SS	18	18	6			-		15 111				-
	†	-	 	ļ				 	15		(15.0)		
10	SS	18	18	9				-	=		(16.5)	CLAYEY SILT, TRACE	SAND,
11	ss_	16	16	25/1"	ļ	<u> </u>	 	ļ	<u> </u>		(17-3)	LIMESTONE, Gray	
												Bottom of Boring @	0 17.3'
									20		!	Auger Refusal @ 17	7.31
		-									19.5'	PVC and screen se	t 2/14/81.
								}			Hole	redrilled 2/14/81	•
								1	25]				
							1		25				
									=				
[
}									30				
Ì					1				=				
ł							1	}	=				
-	<u>l</u>	E STR	ATIFICA	TION LINES	REPRESENT	THE APP	ROXIMATE	BOUNG	ARY LINES B	ETWEEN S	OIL AND ROCK T	YPES: IN-SITU. THE TRANSITION MAY BE	E GRADUAL
<u> </u>	WAT	ER	LEVE	L OBSI	ERVATIO	ONS	\top				 	BORING STARTED	2/12/81
W.I	WATER LEVEL OBSERVATIONS W.L. W.S. OR W.D. A.B. Terracon Cons									nsultan		BORING COMPLETED	2/12/81

Cedar Falls Cedar Rapids- Davenport

Des Moines, IA

Kansas City Wichita, KS

RIG Mobile B53

APPROVED

FOREMAN

TAS JOB # 780607

JAF

W.L.

W.L.

B.C.R.

A.C.R.

									OG OF E	BORIN	G NO . G	M-11
0	WNE	₹							······································		HITECT-EN	
	ALC	AC								G	ERAGHTY	& MILLER, INC.
ľ	TE										JECT NAME	
	RIVI	RDA	LE,	AWOI						A	LCOA MON	ITORING WELLS
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft. ³	Unified Class. Symbol	Depth	Elevation		Description
	HS								=			CLAVEY SHIT TRACE SAME
1.	SS	18	12	10					=			CLAYEY SILT, TRACE SAND WITH RUBBLE,
2	SS	18	10	9							(4.0)	Brown
		-							1111		()	
3	SS	18	16	11					5			
4	SS	18	18	12					=			SILT, TRACE CLAY AND
5	55	18	16	8								SAND WITH OCCASIONAL
	33		10						\exists			SANDY SILT LAYERS,
6	SS	18	16	8			_		10-			Dark Brown
7	SS	18	16	11								
8	SS	18	16	8								
9	SS	18	16	11					\exists		(14.0)	
10	SS	18	18	7				 	15			CLAYEY SILT, TRACE SAND,
11	SS	16	}	30/2"				-	=		(17.4)	Gray,
	33	10	10	30/2"				\vdash	┤		(1/+)	LIMESTONE @ 17.0'
							-		\vdash			Bottom of Boring @ 17.4'
			1					1.	20			Auger Refusal @ 17.4'
						1		Į]]		<u> </u>	Auger Refusar @ 17.4
	ļ		İ								00.51	010
			1						1 7		1	PVC and Screen Set 2/14/81.
			1						25		Hole r	redrilled 2/14/81.
								1	=			
					ļ				=			•
									30—			•
]									=			
	1								=			
-	THE STRATIFICATION LINES REPRESENT THE APPRO						OXIMATE	BOUNG	DARY LINES E	ETWEEN S	OIL AND ROCK T	YPES: IN-SITU, THE TRANSITION MAY BE GRADUAL
	WA	TER	LEVE	L OBS	RVATIO	ONS						BORING STARTED 2/12/81
W.I	W.L. W.S. OR W.D. A.B.						В.		acon Cor Falls Ceda			BORING COMPLETED 2/12/81
W.L	L. B.C.R. A.C.R.								Des Mo	oines, IA		RIGMobile B53 FOREMAN JAF
W.L]						1		Kansas City	Wichita,	NS	APPROVED TAS JOB # 780607

		·			····	 -		 -						
				·				L(OG OF E		G NO. G		· .	
i	WNE								•		HITECT-EN			
	ALCO	JA									JECT NAM	MILLER, INC.		
ì		RNA	LE.	IOWA						1		ORING WELLS		
				10111	 1					1/20	OA HOITT	OKTING WELES		
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft.³	Unified Class. Symbol	Depth	Elevation		Description		
	HS											SILT, TRACE SAN	ND. CLAY	
1	SS	18	15	13					\exists			AND RUBBLE,	10, 02,11	
-	_										(3.5)	Brown		
2	SS	18	14	13					- =					
3	SS	18	 - - - - - - - - - -						5—			SILT, TRACE CLA	AY AND SAND.	
4	SS	i8	8 16 13									Brown	,	
-	-										(7.5)			
5	SS	18						 			<u> </u>			
6	SS	18	16	10				<u> </u>	10 —			CLAYEY SILT, TE	RACE SAND,	
7	ss	18	18 18 12									Dark Brown		
8	ss	18	8	12				<u> </u>						
9	ST	24			İ			}	=		(14.0)		·	
	 	-						(15.4) CLAYEY SILT, TRACE SAND,						
10	SS	18 .	6	30/5	1		(16.5) LIMESTONE, Gray							
	·				}							Bottom of Borin	ng @ 16.5'	
	}											August Dafus 1	o 16 ci	
							<u> </u>		20 —			Auger Refusal @	n 10.5,	
		-				} }								
1								1	=		19.5	PVC and Screen	Set 2/14/81.	
1							}		25		Hole	redrilled 2/14/8	1.	
Ì	}		}	}		i I							•	
ļ							1							
											1			
									30					
												•		
		1		1			1	1			}			
-	π	E STR	ATIFICAT	TION LINES	REPRESENT	THE APPE	OXIMATE	BOUNG	DARY LINES B	ETWEEN S	OIL AND ROCK T	TYPES: IN-SITU, THE TRANSITION I	MAY BE GRADUAL	
<u> </u>	WAT	ER	LEVE	L OBSE	RVATIO	ONS	\neg					BORING STARTED	2/13/81	
W.L	$\overline{}$			OR W.		.0 A.	В.	Terra	acon Cor	nsultan	ts, Inc.	BORING COMPLETE		
W.L	W.L. B.C.R. A.C.R.							edar R	apida Daven Kansas City		Moines, IA KS		FOREMAN JAF	
W.L											·· ·	APPROVED TAS	JOB # 780607	

								L	OG OF B	ORING	S NO. GM	-13
l .	WNER				-	•				- 1	HITECT-EN	•
	ALCC TE)A								1	JECT NAME	MILLER, INC.
		RDA	LE,	AWO 1								TORING WELLS
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft. ³	Unified Class. Symbol	Depth	Elevation		Description
	HS	.0	• 0	(2								
1		18	18	63						,		FILL - SILT, LITTLE CLAY AND SAND AND CONCRETE
2	SS	18		24	·							RUBBLE, Brown
<u>3</u> 4	SS SS	18	6	6 35/1''					5 —		(7.0)	
5	SS		9	43							(700)	
6	SS			40/4"],,]			
7	SS	18	7	15				FILL - CLAYEY SILT, LITTLE SAND AND CONCRETE RUBBLE,				
8	SS	18	18	13	;			10				Brown and Dark Brown
9	SS	18	16	15							•	
10	SS	18	1	30/5"	i				15		(16 5)	
11	SS	4-	- 4	30/44					1 =		(10.5)	LIMESTONE @ 16.3'
												Bottom of Boring @ 16.5'
									20	'		Auger Refusal @ 16.5'
		}							ヨ			
											19.5'	PVC and Screen Set 2/14/81.
						<u> </u>			25		Hole	redrilled 2/14/81.
									=			
									=====================================			
				1			l		=		į	
									30-			
_	<u> </u>			<u> </u>		<u> </u>	1				<u></u>	
<u> </u>							ROXIMATE	BOUNG	DARY LINES B	ETWEEN S	DIL AND ROCK T	YPES: IN-SITU. THE TRANSITION MAY BE GRADUAL
14/		ER			ERVATIO			T	0000 Ca-		io les	BORING STARTED 2/13/81 BORING COMPLETED 2/13/81
W.L. W.S. OR W.D. A.B. W.L. B.C.R. A.C.R.							— -		acon Cor apids Daven			RIG Mobile B53 FOREMAN JAF
w.i				<u> </u>	···				Kansas City	Wichita,	KS	APPROVED TAS JOB # 780607

				. <u> </u>				1.6	OC OF 5	ODIN	NG NO. GM-14
0	WNER								JG OF E		ICHITECT-ENGINEER
	ALC				•						ERAGHTY & MILLER, INC.
ŞI	TE										ROJECT NAME
	RIVE	ERDA	LE,	I OWA						AL	LCOA MONITORING WELLS
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft.²	Water Content-%	Dry Density- Ibs./ft.³	Unified Class. Symbol	Depth	Elevation	Description
	HS										8" Crushed Limestone
1	SS	18	16	25							FILL - CLAYEY SILT, TRACE SAND WITH CONCRETE RUBBLE,
2	SS	18	18	8							(4.5) Brown
3	SS	18	14	2							
4	SS	18	4	2				 			CLAYEY SILT WITH SAND
-	33	10						 	三		LAYERS, Dark Brown
_5	SS	18	18	8					=		
6	SS	18	13	12				<u> </u>	5 1 1 1 1 1 1 1 1 1		Gray @ 11.1'
7	SS	18	18	14					=		(11.5) LIMESTONE @ 11.3'
·											Bottom of Boring @ 11.5'
									15		Auger Refusal @ 11.5'
									20		14.5' PVC and Screen Set 2/14/81. Hole redrilled 2/14/81.
_				· 			TOXIMATE	BOUNE	DARY LINES B	ETWEEN S	SOIL AND ROCK TYPES: IN-SITU, THE TRANSITION MAY BE GRADUAL
W.L	WA1	_		OR W.	D. 8.0		В.	Terr	acon Cor	nsultan	BORING STARTED 2/13/81 ints, Inc. BORING COMPLETED 2/13/81
W.L	1			B.C.	\rightarrow	A.C.			apids Daven	port Des	RIGMODILE B53 FOREMAN JAF
W.L	+								Kansas City	Wichita,	APPROVED TAS JOB # 780607

								1 (OG OF I	BORIN	NG NO. GM-15
01	WNE	₹									CHITECT-ENGINEER
	AL	COA		•							GERAGHTY & MILLER, INC.
SI	TE										OJECT NAME
	RI	/ERD	ALE,	1 OWA	\ 						ALCOA MONITORING WELLS
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft.²	Water Content-%	Dry Density- Ibs./ft. ³	Unified Class. Symbol	Depth	Elevation	Description 6" Crushed Limestone
	HS										(1.5) SILT, TRACE CLAY AND SAND,
1	SS	18	18	11					\exists		(1.5) Brown and Dark Brown
2	SS	18	10	27							
3	SS		6	15					5 —		FILL - CLAYEY SILT, TRACE SAND AND RUBBLE,
4		18	14	7							Brown and Dark Brown
5	SS	18	13	11							
6	SS		18	41							(9.6)
7	SS	5		4/5"			-		10 —		(11.0) WEATHERED LIMESTONE,
				7/ /				 	=		
·			}								Bottom of Boring @ 11.0'
		:						;	15 —		
	,	! !									14' PVC and Screen Set 2/14/81.
		:							20 —		Hole redrilled 2/14/81.
					ļ						
	}				}						
		1]		25 _		
					j]		=		
									=	1	
		1				1	1				
									30	1	
									=	1	
	 			1		1	1		-	1	
	n	I IE STR	ATIFICA	TION LINES	REPRESENT	THE APP	ROXIMATE	BOUNG	DARY LINES I	BETWEEN S	SOIL AND ROCK TYPES: IN-SITU, THE TRANSITION MAY BE GRADUAL
	WA.	rER	LEVE	L OBS	ERVATION	ONS					BORING STARTED 2/13/81
W.L			W.S.	OR W.			В.	Terr	acon Co	nsultan	
W.L	+			B.C.	R.	A.C	R. C	ecar A	apids Dave Kansas City		RIG Mobile B53 FOREMAN JA APPROVED TAS JOB # 780607
W.L	<u> </u>										APPROVED TAS JOB # 780607

<u></u>		•						L	OG OF	BORIN	G NO. G	M-16
	VNE										HITECT-EN	
SI	ALC	OA			-		· · · · · · · · · · · · · · · · · · ·					MILLER, Inc.
		EBUV	.I.F	I OWA							COA MONI	E TORING WELLS
			,,,,	, 547						1.70	.5571 710141	
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft.3	Unified Class. Symbol	Depth	Elevation		Description
	нѕ								5		(7.5)	FILL - CLAYEY SILT WITH CONCRETE RUBBLE, Brown and Dark Brown
	RB							 	=		:	
RUN 1	DB	94	60	64%	Recove	гу			10			WEATHERED LIMESTONE, Gray
RUN 2	DB	80	66	83	% Reco	very			20		(23.0)	
									25			Bottom of Boring @ 23.0'
									30			PVC and Screen Set creen Used.
					1		1			1		
-	<u> </u>	HE STP	ATIFICAT	TION LINES	REPRESENT	THE APP	ROXIMATI	BOUNT	DARY LINES	ETWEFN S	OIL AND ROCK T	YPES: IN-SITU, THE TRANSITION MAY BE GRADUAL
-					ERVATION		1					BORING STARTED 2/17/81
W.L		· c K		OR W.			В.	Terr	acon Co	nsultan	its, Inc.	BORING STARTED 2/17/01
W.L.	+			B.C.		A.C.			apids Daver	nport Des	Moines, IA	RIG Mobile B53 FOREMAN JAF
W.L.					 -		7		Kansas City	Wichita,	KS ·	APPROVED TAS JOB # 780607

		<u> </u>							00.05	BODI	NC NO	0.11.7
-	WNE	R			***************************************	•	 .	L	.UG OF		NG NO.	_GM17 ENGINEER
	_		NUM	COMPA	NY OF	AMER I	CA			^'		TY & MILLER INC.
S	ITE			_					•	PI	ROJECT NA	
	DA	AVEN	PORT	, 10W	Α						ALCOA	MONITORING WELLS
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft.²	Water Content-%	Dry Density- lbs./ft.3	Unified Class. Symbol	Depth	Elevation	SUBFACE	Description
	PA	\ <u>\</u>			300,			3.,	=	-	JUNFACI	E ELEVATION 581.0
	ľ	5"	2	40/5		15.3			=	1		·
	PA											FILL, SILT, SAND, LIMESTONE, GRAVEL, RUBBLE & WOOD Dark Gray to Gray Brown
2	SS	18	4	10		13.9			5			Dark Gray to Gray Brown
	PA								=			
3	SS	18	7	20	,	18.3						
	PA								=	572.	q(9.0)	
4	SS PA	18	5_	_10		20.1			10-			FILL, SANDY SILTY CLAY, TRACE CRUSHED LIMESTONE (OIL
5	SS PA	18	_5	37		17.1						SATURATED) Dark Gray to Gray Brown
6	SS PA	18	6	7		17.1			15	565.	0(16.0)	SANDY SILT, TRACE CLAY &
7	SS PA	18	14	12	_	31.5		ML OL		562.	5(18.5)	ORGANICS & WOOD (OIL SATURATED) Dark Brown to Dark Gray
8	SS PA	18	12	17		30.1	93	CL	20	550	5(21.5)	CLAYEY SILT, TRACE SAND (OIL SATURATED) Gray Brown
9		18	12	21		19.1	101	CL		l	0(23.0)	SILTY CLAY WITH SAND SEAMS (RESIDUAL SHALE & SANDSTONE) Gray
									25			BOTTOM OF BORING
		,				Set 23' of observation well with 15' of well screen and 8' of 2" 0.D. PVC pipe above screen 2.2' of riser pipe above ground. Annulus filled with sand to 7', sealed with 1' of bentonite, and grouted with protective pipe to surface.						
	·											protective pipe to surface.
	THE	STRA	TIFICATI	ON LINES R	EPRESENT	THE APPRO	XIMATE E		ARY LINES B	ETWEEN S	SOIL AND ROCK	TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL
	WAT	ER L	EVEL	OBSE	RVATIO	NS	T -					BORING STARTED 2-11-82
√.L.	6.			OR W.D		A.B			CON COI Falla Ceda			BORING COMPLETED 2-11-82
W.L.				B.C.R		A.C.R]		Kansas City			RIG BOMB FOREMAN JAF
W.L.							<u>. </u>		Oklahoma C	ity Tuisa	., ОК 	APPROVED GKO JOB # 781580-1

[OG OF	BOR	IN	G NO. GM18
T-0	WNE	R	<u>.</u>		-							HITECT-ENGINEER
	<u> </u>	LUMI	NUM	COMPA	NY OF	AMERI	CA					GERAGHTY & MILLER INC.
S	ITE	=								F	PRC	JECT NAME
_	<i>ب</i> رں 		PORT	, 10W	۹ 			,	Υ .			ALCOA MONITORING WELLS
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- ibs./ft.3	Unified Class. Symbol	Depth	Elevation		Description SURFACE ELEVATION 579.2
	PA								=			
	SS	18	8	20	_	18.6					ĺ	FILL, SILTY CLAY, TRACE SAND AND GRAVEL, RUBBLE & WOOD
一	PA	10	۰	20		10.0			=		ļ	Dark Gray
2	\$\$	3	2	55/31		25.2			5_=	574	. 2	(5.0)
	PA		ļ									
\vdash	1.5	-		 				-				
3_	SS	18	10	6		24.6						
	PA	-					 - ·	_]		FILL, SANDY CLAYEY SILT,
4	SS	18	5	8	_	17.1			10			TRACE CRUSHED LIMESTONE
	PA		<u> </u>									(OIL SATURATED) Dark Brown, Dark Gray,
5	SS	18	10	6		19.9					-	Red Brown
_	PA		-			17.7			=	1		
5	ss	8	10	8		29.3	•		15		- 1	·
_ ر	PA	-	110			23.3				563.	. 2	(16.0)
7	ss ·	8	10	12		16.7		ML OL		560.	. 7	SANDY SILT, TRACE CLAY & ORGANICS (OIL SATURATED) Dark Brown to Dark Gray
	PA_							CL				
8	SS_	18	18	12		26.4		СН	20		ļ	SILTY CLAY W/SAND SEAMS (RESIDUAL SHALE & SANDSTONE)
	PA	}	 					CL-]		Gray
9	SS	18 -	18	63		31.3	78	СН		556.	. 2	(Chemical Odor)
									25			BOTTOM OF BORING
												Power Auger Refusal @ 23'
											-	on sandstone (field classifi- cation)
						j			\exists			Set 23' of well casing consisting of
į					ŀ				\exists			15' of well screen, with 8' of 2" 0.D
											-	PVC pipe above 2.91 feet of riser
									. =			with sand to 7' from surface, sealed
											Į,	with I' of bentonite, and then protection
	тн	E STRA	TIFICATI	ION LINES F	EPRESENT	THE APPRO	IXIMATE E		AY LINES B	ETWEEN	, so	DIPE GROUTED IN.
					RVATIO		T					BORING STARTED 2-11-82
V.L	T			OR W.D		5 A.B			ICON COI Falls Coda			s, inc.
W.L.	+			B.C.R		A.C.R	⊣	1	Des Mi Kansas City	olnes, li Wichi	A Ita, K	s RIG BOMB FOREMAN JAF
W.L.]		Oklahoma C	illy Tul	58, C	APPROVED GKO JOB # 781580-1

		_			-			1	OG OF	BOB) IN	NG NO. GM19
\vdash	OWNE	ER.							00 01			RCHITECT-ENGINEER
	Α	LUMI	NUM	COMPA	NY OF	AMERI	CA					GERAGHTY & MILLER INC.
	SITE				-				<u>.</u>	F	PRO	ROJECT NAME
·	D,	AVEN	PORT	, 10W/	Α	· · · · · · · · · · · · · · · · · · ·		, ·	·			ALCOA MONITORING WELLS
Sample No	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content -%	Dry Density- lbs./ft.³	Unified Class. Symbol	Depth	Elevation		Description SURFACE ELEVATION 580.6
	PA								=	1		
	SS PA		6	48		14.7						FILL, SANDY CLAYEY SILT, RUBBLE, WOOD & CRUSHED LIMESTONE
2	SS PA	18	2	27		14.9	<u> </u>		5 -	٦.	.6	Dark Gray to Dark Brown 6(6.0)
3	 	18	4	7		18.8						
4	SS PA	18	4	3		24.6			10			FILL, CLAYEY SILT, TRACE SAND AND CRUSHED LIMESTONE
5		18	4	7		17.1		ļ ——		1		(OIL SATURATED) Dark Gray to Gray
ŕ	PA		-			1/-			15—	}		
6	1	18	6	7		17.8			15	}		
L	PA									1		
7	SS PA	18	4	9		21.1	 .			562.	. 1	(18.5)
8	ss	18	10	10		23.2	95	OL ML	20-	559.	.6	SANDY SILT, TRACE CLAY, ORGANICS (OIL SATURATED) ORGANICS (OIL SATURATED)
-	PA	<u> </u>						CL		,,,,		SILTY CLAY WITH THIN SAND
9	SS PA	18	14	1.5		17.8		СН				SEAMS (RESIDUAL CLAY SHALE AND SANDSTONE)
10	ss	18	14	63		23.4		다	25—	555	. 1	Gray to Gray Green & White (Chemical Odor)
												BOTTOM OF BORING Set 25' of observation well in groun with 15' of well screen and 10' of 2" O.D. PVC pipe above screen. 3' oriser pipe above ground. Annulus packed with sand to 9' from surface, sealed with 1' of bentonite, and the grouted in protective pipe.
	т.	E STRA	TIFICATI	ON UNES R	EPRESENT	THE APPRO	XIMATE E	90UNO4	AY LINES B	ETWEEN	v 50	OIL AND ROCK TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL.
ا					RVATIO							nts, Inc. BORING STARTED 2-11-82
<u>w.i</u> w.i	- -	.01	w.s. (DR W.D B.C.R	8.0	A.B.	⊣			olnes, l	A	PIC DOVD FOREMAN IAC
W.I				D.C.K	<u></u>	A.C.R	7		Kansas City Okiahoma C			

								L	OG OF E	ORIN	G NO. GM2	0
01	WNE	R							_		HITECT-EN	
		MUI	COMP	ANY O	F AMER	ICA	<u>. </u>			GE	RAGHTY &	MILLER
	TE									1	DIECT NAME	
DAY	VENP		WOR	KS, R	I VE RDA	LE, I	OWA			PCE	B LAGOON_	MONITORING
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconlined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft.³	Unified Class. Symbol	Depth ·	Elevation		Description
	HS								5 10 10 10 10 10 10 10 10 10 10 10 10 10		(13.0')	FILL: SANDY CLAYEY SILT Gray LIMESTONE, WEATHERED, Gray
, 🕂								-	15		(14.5')	BOTTOM OF BORING @ 14.5'
											Classif	
									ulmln		estimate tailing	ication of soil materials ed from disturbed auger s. See attached documentation l details.
										- ,,		
					İ							
				<u> </u>							<u></u>	
•	TH	E STRA	TIPICAT	ION LINES	REPRESENT	THE APPRO	DXIMATE	BOUNG	ARY LINES B	ETWEEN S	OIL AND ROCK T	YPES: IN-SITU, THE TRANSITION MAY BE GRADUAL
. —					RVATIO			Terr	acon Coi	nsultan	its, Inc.	BORING STARTED 9-27-84
W.L.	D	ry	W.5.	OR W.					Falls Code			BORING COMPLETED 9-27-84
W.L.	-			B.C.F		A.C.F	<u>-</u>		Kansas City Oklahoma C	Wichita		APPROVED DEK JOB # 784568

W.L.

JOB # 784568

APPROVED

DEK

						 -			20.05.5	20011	G NO GM	21	
-	WNE							Γ.(OG OF E		HITECT-EN		
l .			СОМР	ΑΝΥ Ω	F AMER	TCA					RAGHTY &		
	TE		301.11				 -			i	DIECT NAMI		
, DA	VENE	ORT	WOR	KS. R	IVERDA	IE. I	OWA			ı i		MONITORING	
				<u>K</u> S , K	~					113	2,1400.1		
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/tt.	Unconfined Compressive Strength-lbs./ft	Water Content-%	Dry Density- Ibs./ft. ³	Unified Class. Symbol	Depth	Elevation		Description	
	-								 li		(5.0')	FILL: SANDY C AND CONCRETE Brown	
	НS								5		(5.0)	FILL: SANDY C WITH OCCASION Gray	
									15		(16.5') (18.0')	LIMESTONE, WE	ATHERED, Gray
				-					20 -	Tu i	estimate tailings	ication of soil ed from disturbe s. See attached details.	materials ed auger
	The	E STRA	TIFICAT	ION LINES	REPRESENT	THE APPRO	STAMIXC	BOUND	ARY LINES B	ETWĘEN S	OIL AND ROCK TO	PES, IN-SITU. THE TRANSITION	MAY BE GRADUAL
<u> </u>	WAT	ER	LEVE	OBSE	RVATIO	NS	T	Tarr	2000 000	201100	ts Inc	BORING STARTED	9-28-84
W.L	. D	ry	W.S.	OR W.E	Dry	' A.E	3.		acon Cor Falls Ceda			BORING COMPLETI	
W.L	+-			B.C.I	 -	A.C.F	 i			oines, IA	•	RIG Mobile 2	FOREMAN RAF
W.L							٦		Oklahoma C				JOB = 784568

								L	OG OF E	BORIN	G NO.	 1122	,
C	WNE	R				· 			<u> </u>		HITECT-EN		
. —		MUV	COMP	ANY O	F AMER	ICA				GE	RAGHTY &	MILLER	
S	ITE									PRO	DIECT NAME		
D/	VENE	ORT	WOR	KS, R	I VE RDA	LE, I	OWA			PCI	B LAGOON	MONITORING	
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/It.	Unconfined Compressive Strength-lbs./ft.²	Water Content-%	Dry Density- Ibs./ft.3	Unified Class. Symbol	Depth	Elevation		Description	
									5		(5.0')	FILL: SANDY CL CONCRETE RUBBL Brown	AYEY SILT AND E
	HS								10		(12.0')	FILL: SANDY CL AND OCCASIONAL RUBBLE Gray	
		-							15		(17.5')	SANDY SILTY CL GRAVEL Gray Glacial Till SEE NOTE =1	
			-						20		estimate tailings	BOTTOM OF BORI	materials ' ed auger
											NOTE #	1: LIMESTONE, SLI WEATHERED, Gra	
	ארד	E STRA	TIFICAT	ION UNES	REPRESENT	THE APP	TAMIKO	BOUNG	DARY LINES E	ETWEEN S	SOIL AND ROCK T	YPES. IN-SITU, THE TRANSITION	MAY BE GRADUAL
. –					RVATIO		- -					BORING STARTED	9-27-84
W.L				OR W.			<u>a</u>		racon Co			BORING COMPLETI	
W.L				B.C.I		A.C.			Des M	loines, IA		RIG Mobile 2	FOREMAN RAF
W.L									Kansas Cit Oklahoma (APPROVED DEK	JOB # 784568

								L	OG OF E	ORIN	G NO. GI	M23
	WNE				,					ARC	HITECT-ENC	GINEER
'		IUM	COMP	ANY O	FAMER	ICA		_			RAGHTY & I	MILLER
	ITE		1100	vc 5	, uc no 1		01.15			l l	JECT NAME	MONTTODING
L DA	VENE	T	WUR	K5, R	! VERDA	LE, I	UWA		: 	I PCE	3 LAGOON	MONITORING
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/It.	Unconfined Compressive Strength-Ibs./ft. ²	Water Content-%	Dry Density- lbs./ft.³	Unified Class. Symbol	Depth	Elevation		Description
	НS								5 10 11 15 11 11 11 11 1		(11.0')	FILL: SANDY CLAYEY SILT AND CONCRETE RUBBLE Brown SANDY CLAYEY SILT Gray
											(18.0')	SEE NOTE #1
a	þpra	x im	te	depths	e at of 1 crete	5' pi	ior		20 -		estimate tailings	
]								LIMESTONE, WEATHERED
		1					}					Gray
		 					}					
			<u> </u>					<u> </u>				
	TH	C STRA	TIFICAT	ION LINES	REPRESENT	THE APPR	STAMIKO	BOUND	ARY UNES B	ETWEEN S	OIL AND ROCK TY	PES: IN-SITU. THE TRANSITION MAY BE GRADUAL
	WAT	ER L	EVE	LOBSE	RVATIO	ONS		Terr	acon Co	nsultan	nts. Inc.	BORING STARTED 9-27-84
W.L	. 1	7.5	w.s.	OR W.D). 17	.5 A.I	В.		Davenport	BORING COMPLETED 9-27-84		

Cedar Falls Cedar Rapids Davenport Des Moines, IA

Kansas City Wichita, KS Oktahoma City Tulsa, OK

A.C.R.

B.C.R.

RIG Mobile 2

APPROVED

FOREMAN RAF

DEK JOB # 784568

W.L.

W.L.

								L	OG OF	BORIN	NG NO.				
	WNE						· •			AR	CHITECT-ENGINEER				
		IUM	СФИР	ANY O	F AMER	ICA			 -						
1 -	HTE		-	O.K.C. (10014			ł	OJECT NAME				
<u> D</u>	AV EN		, ,	RKS; I	RIVERD.	ALE,	TOWA	r	<u> </u>	I WAS	STE LAGOON STABILIZATION				
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft.3	Unified Class. Symbol	Depth	Elevation	Description GROUND SURFACE ELEVATION = 580.3				
-	PA			<u> </u>					=		FILL-SILT AND CONCRETE RUBBLE, MIXED WITH CEMENT DUST				
1	SS	18	11	13							Brown to Gray Brown				
	PA								=	576.8	(3.5)				
7	22	10	17	Λ			-		5 _=		FILL-CEMENT DUST, UNMIXED, Gray				
2		18	13	4		_				574.3	(6.0)				
	PA								=		FILL-CEMENT DUST MIXED W/OIL,				
3	ss	18	14	6						p/2.3	(8.0) Black				
-	PA								10		FILL-SILT, TRACE CLAY, MIXED W/ CEMENT DUST				
4	SS	18	11	8	,					, i					
-	SS 18 14 8 -Gray to Dark Brown -Chemical Odor -Layers of Unmixed Cement Dust Present														
<u> </u>	PA														
5_5	55	18	12	4					l.		(15.0)				
[PA								15	62.8	FILL-SILT, MIXED WITH OIL				
16	SS	18	12	*							Black				
<u> </u>			-								(17.5)				
	NOT	E:		samp! ield.	es giv	en to	cli		20		BOTTOM OF BORING @ 17.5				
	*	Spl			sample n weig		king		hulmi						
							STAMIXC	BOUNDA	ARY LINES B	ETWEEN SC	DIL AND ROCK TYPES: IN-SITU, THE TRANSITION MAY BE GRADUAL				
<u></u>	_				RVATIO			_			BORING STARTED 12-14-81				
W.L.	+	. 0	W.S.	OR W.D B.C.R	-}	A.C.F	┥.		CON COR		Moines IA				
W.L			- 0			<u>д.С.Р</u>	4 .		Kansas City		INIO MICEE IFOREMAN CIA				
	TEST	<u>/e-i</u>	n ø	<u> 7.0' </u>	<u> </u>		٠								

									L	OG OF	BORIN	G NO.	2 (3rd locat	ion)		
		WNE.		1 00	MPANY	OF AME	FRICA				ARG	HITECT-ENG	INEER			
}		TE			-11 71111					·	PRO	JECT NAME				
1	D	AVE	NPOF	RT WO	ORKS ;	RIVER	RDALE	, IOW	Α		WAS	TE LAGOON	STABILIZATIO	N		
	Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Uncontined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft. ³	Unified Class. Symbol	Depth	Elevation	GROUND SU	Descriptio JRFACE ELEVAT		0.3	
-		PA								=			SILT AND ROCK			
-	1	SS	18	11	12					Ξ	577.3	<u>W/CEME</u> (3.0)	ENT DUST, Bro	wn to Gra	y"Browi	
		РΑ									•	FILL-S	SILT, MIXED W	ITH CEMEN	T DUST	
	2	ss	18	16	5					5			to Gray Brow			
	7	PA									573. 3	(7 0)				
	3	SS	18	5	4								SILT, MIXED W	ITH CEMEN	T DUST	
Γ		PA								10		AND OI	L			
	4 SS 18 5 3 — Occasional Layers of Concrete Rubble Strong Chemical Odor @ 10.0															
+	-	PA SANDY SILTY CLAY, TRACE GRAVEL -Dark Brown														
-	-{	PA SANDY SILTY CLAY, TRACE GRAVEL -Dark Brown														
L	5	-Dark Brown														
			NO	ΓΕ:	All sa	mples in t	give he fi	n to eld				BOTT	COM OF BORING : Location of moved three list location fusal @ 7 2nd Location fusal @ 7	of borings ee times: on-auger 7.5 on-auger	re-	
L								OXIMATE E	OUNDA	RY LINES B	ETWEEN SO		I: IN-SITU. THE TRANSITION			
1-	۱.L.)	MATI	_		OBSE	RVATIO	NS O A.B		Torre	.ae C	*حمداريم		DRING STARTED DRING COMPLET	12-14-8		
_	.L.			vv.3. (B.C.R		A.C.R		far Rep	CON CON	port Des	Aoines, IA RI		FOREMAN	SM.	
\vdash	'.L.	Bor	ing	Des		d By C		_	on K	ansas City	Wichita, K	s	PROVED RKL	JOB # 781		

								L	OG OF	BORIN	IG NO.	3 (3rd lo	cation)
1 -	WNE		204	3410/								ENGINEER	
L	LUMI	NUM	СОМ	PANY (OF AME	RICA	. —				O ISOT N		
		IPOR	T WO	RKS :	RIVER	DALE,	IOWA			W/	ASTE LA	GOON STABILIZ	ATION
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- lbs./ft. ³	Unified Class. Symbol	Depth	Elevation	GROUN	Descr D SURFACE ELE	iption VATION = 580.3
	PA	_		 					=	1			D WITH CEMENT DUST
1	<u>ss</u>	18	16	16							-		cement dust)
	PA	 					 -		_ =				
2	SS	18	16	3					5_=	574.3	(6.0)		
	PA_												T (OIL SATURATED)
3	ss	18	6	4					=			<u>ND POORLY MIX</u> UST,	ED WITH CEMENT
	PA_								10_=		_	Brown to Blac	k @ 7' to 8.5'
4	ss	18	9	14								Few layers of	Unmixed Cement
	PA											Dust	
5	۹ς.	18	10	4							·		
	C.C.		*	*		,			15	567.0			VEL @ 15 to 16.51)
6	SS	18	<u> </u>						7	263.8	(16.5)	Limestone, B	rown @ 16.5'
	NOT				s give	n to	clie	n+	:			BOTTOM OF BOR	• •
		; -	n th	e fie	ld.					,	N	three t	ation-auger re-
	* 9	pli	t-sp	oon s	ampler	bour	cing					2nd loc fusal @	ation-auger re- 4.0
	į												
						ĺ							
1	The	[STPA	TIPICAT	ON LINES =	MDDESERT.	THE APPRO	NIMATE :	301 INC 4	AY LIMES D	ETWSEN CO	IL AND POC	TYPES: IN-SITU, THE TRAN	SITION MAY BE GRADUAL
					RVATIO		1		שתבם 8		AND NOCK	BORING START	
N.L.	VVAI			OR W.D		NS A.B		Terra	con Cor	tactliga	s Inc	BORING STAR	
W.L.	 			B.C.R		A.C.R	⊣ .	iar Rap	ids Daven	port Des	Moines, IA	RIG	FOREMAN
W.L.			-		1		1	ĸ	ansas City	Wichita, K	13	APPROVED	JOB =

									OG OF	BORIN	IG NO. 4	·	
	WNE		<u></u>				<u> </u>				CHITECT-E		
	A LUM	IINUI	м са	MPANY	OF AM	ERICA							
	I TE DAVE	NPOI	RT W	ORKS	: RIVE	RDALE	, IOW	/A		PR WAS	OJECT NAN STE LAGO	ME ON STABILIZATIO	N
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft ²	Water Content-%	Dry Density- Ibs./ft.³	Unified Class. Symbol	Depth	Elevation	GROUND	Descriptio	
1	ST	24	12			15.9	111.5			·		L-MIXTURE OF SA T AND RUBBLE	NDY CLAYEY
2	ST	24	.10			20.8			5			rk Brown emical Odor Beg	ins @ 5.0
3_	AS PA	12											•
4	AS	12			<u> </u>								
											(9.0)		
	PA								10			L-MIXTURE OF CL	
		-						-				RUBBLE FILL AN	
5	AS	24			_					563.3	(13.0)	Limestone @ 13.	0'
	NO	TE:			,4,an		iven		15		ВО	TTOM OF BORING	@ 13.0
	THI	E STRA	TIPICATI	ON LINES F	REPRESENT	THE APPRO	XIMATE !	BOUNDA	AY LINES BI	TWEEN SC	IIL AND ROCK TO	PES: IN-SITU. THE TRANSITION	MAY BE GRADUAL
	T				RVATIO		_					BORING STARTED	12-15-81
<u>W.L.</u>	3.	5	w.s. (OR W.D B.C.R	+	A.C.R	_		COR COR			RIG CME 55	FOREMAN SM
W.L.	4.	o e	24 1		<u>··1</u>	A.C.N	4		(ansas City		-	APPROVED RKL	JOB = 781580

								L	OG OF	BORIN	IG NO.	5	
	WNE		COM	PANY (OF AME	RICA				AR	CHITECT-E	NGINEER	
	ITE	14014		- ANG	JI /////	RICA	-			PR	DJECT NAM	. <u>. </u>	
1		POR	T WO	RKS; f	RIVERD	ALE,	I OWA			i i		ON STABILIZATIO	N
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- lbs./ft. ³	Unified Class. Symbol	Depth	Elevation	GROUND S	Descriptio	
		S			30 g	>	<u> </u>	3 %			FII	LL-MIXTURE OF S	LITY CLAY
1	ST	24	18			27.1	90.5				TRA	ACE SAND AND RU	BBLE FILL
2	ST	12	R			27_0			=	72.0	(4.0)	5W/1 10 110d/01 01	
	PA								5_=		RUE	L-MIXTURE OF S BBLE rk Brown	ILT, GRAVEL,
3	AS	24									(0,0)		
	PA				ľ				10	76.0		YEY SILT, TRAC	E SAND
4	AS	24								63.0	(13.0)We	eathered Limest	one @ 13.0'
									15		вот	TOM OF BORING	@ 13.0
	NO	FE:		ples: field	3 & 4	giver	†o (e			•		
	THE	E STRA	TIPICATI	ON LINES F	EPRESENT	THE APPRO	XIMATE 8	SOUNDA	LRY LINES B	ETWEEN SC	IL AND ROCK TY	PES: IN-SITU, THE TRANSITION	MAY BE GRADUAL
	WAT	ER L	EVEL	OBSE	RVATIO	NS	T^{-}					BORING STARTED	12-15-81
W.L.	1				None				con Cor		s, Inc.	BORING COMPLETE	ED 12-15-81
W.L.				B.C.R		A.C.R	L. Coc		oids Daven Cansas City		Moines, IA	RIG CMF 55	FOREMAN SM
W.L.	1 Q	n' 4	24	h =			ı				i i	APPROVED DVI	JOB # 781580

LOG OF BORING NO. 6 OWNER ARCHITECT-ENGINEER ALUMINUM COMPANY OF AMERICA WASTE LAGOON STABILIZATION DAVEMPORT WORKS : RIVERDALE, IOWA Sampling Distance Unconfined Compressive Strength-lbs./ft. Water Content Unified Class. Symbol Dry Density-lbs./ft.³ Type Sample Description Recovery Blows/ft. Depth GROUND SURFACE ELEVATION = 575.9 FILL-SILTY CLAY, TRACE SAND, ST 12 10 15.0113.4 TRACE GRAVEL WITH OCCASIONAL RUBBLE, Brown to Red/Brown PA (5.0)570.9 CLAYEY SILT, TRACE SAND, Gray/Brown Chemical Odor 24 AS 566.9 (9.0) 10 CLAYEY SILT, TRACE SAND, PA (SATURATED WITH OIL) Dark Brown 62.9 (13.0) 24 AS SANDY SILT, Greenish Gray PA (15.0)(Chemical Odor) AS 12 **☆**60.9 BOTTOM OF BORING @ 15.0 NOTE: Samples 2,3 and 4 were hiven to client in flield THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES: IN-SITU, THE TRANSITION MAY BE GRADUAL. **BORING STARTED** WATER LEVEL OBSERVATIONS 12-15-81 BORING COMPLETED 12-15-81 W.L. 3.5 2.0 W.S. OR W.D. A.B. Terracon Consultants, Inc. Cedar Rapids Davenport Des Moines, IA FOREMAN SM W.L. B.C.R. A.C.R. RIG . CME 55 Kansas City Wichita, KS 2.4 @ 24 hr. **APPROVED** RKL W.L. JOB # 781580

								L	OG OF	BORIN	IG NO.	7		
1	WNE		COL	PANY	OF AME	DICA				AR	CHITECT-E	NGINEER		
<u> </u>	ITE) tron.		: ANI	O1 A1412					PRI	OJECT NAM	AE .		
ł		VPCR	T WC	RKS;	RIVERD	ALE,	AWO1			1		ON STABIL	IZATI	ON .
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-Ibs./ft. ²	Water Content-%	Dry Density- Ibs./ft.3	Unified Class. Symbol	Depth	Elevation	GROUND	De SURFACE EI	escription	
1	ST	24	4		* 9000+	15.3					<u> </u>	TLL-CLAYEY	ACE S	AND WITH
2	ST	24	12		* 4200	16 3	106.4		=			CCASIONAL Dark Brown	KUBB	<u>LE</u> ,
	PA	24	12		4200	10.3	. 00.4		5					
3	AS	12										·		
	PA								10	567 . 7	(11.0)			·
4	* Calibrated Hand Pe									565.7	(13.0)	OTE 1		<u>.</u>
		* Ca	ΙΙĐ	-ated	Hand	Penet	romet	er	15	·	В	OTTOM OF E	30R I NO	G @ 13.0
	-	VOT 8			# 3 ar				20 —		. TRAC AND	-CLAYEY SI E SAND, WI	LT, I	LITTLE GRAVEL DNCRETE RUBBLE
	TH	E STRA	TIFICATI	ION LINES	REPRESENT	THE APPRO	OXIMATE E	BOUNDA	URY LINES 8	ETWEEN SC	PIL AND ROCK T	YPES: IN-SITU. THE-T	RANSITIO	N MAY BE GRADUAL
ь	WAT				RVATIO							BORING STA		12-15-81
W.L.	L.N	one.	W.S.	OR W.D						nsultant	S, INC. Moines, IA	310		ED 12-15-81
W.L.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		24	B.C.R	·- <u> </u>	A.C.R	```			Wichita, K		APPROVED		JOB = 781580

								L	OG OF		NG NO.			
1	WHE									A	RCHITECT-	ENGINEER		
		LMCs	· CC	(PAN)	<u> </u>	ERICA								·
1	ITE	•				.		_			ROJECT NA			211
	AVE	T	RT WO	ORKS :	RIVE	DALE,	, I OW	A .	····	, <u> </u>	ASTE LAG	SOON STAB	ILIZATI	UN
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Uncontined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- lbs./ft. ³	Unified Class. Symbol	Depth	Elevation	GROUNE		Descriptio ELEVAT	n ION = 577.8
	51	0	6			19.1	102							TDACE CAND
	PA	}	•		1							WITH OCC		T, TRACE SAND
2	ST	12	6	 	 	12.0	-							ark Brown
-	J	-	 		 	12.0	ļ					01477510		
	PA													
3	AS	24								568.	8 (9.0)			
	PA									555.		FILL-CLAY WITH RUBE Brown to Strong Cl	BLE AND Dark Bi	rown
	NOTE	OTE: Sample #3 given to in field										BOTTOM OF	F BORING	G @ 13.0 ••
ŀ	1								\neg		}			
ļ					,			ı	⇉					
Ì							}	1	-					
				CW 1	F-0207						<u></u>	****		MAN OF COLOR
							XIMATE E	DUNDA	RY UNES BO	TWEEN S	OIL AND ROCK			MAY BE GRADUAL
					RVATIO		4	_				BORING S		12-15-81
V.L.	6.	0	W.S.	OR W.D		A.E	→ _		con Con		ts, inc.	<u> </u>		D12-15-81
W.L.				B.C.R	<u>.l</u>	A.C.R	<u> </u>		iida Daven; ansas City		•		55	FOREMAN SM
W.L.	D.C.R.I A.C.R.I											APPROVE	D RKI	JOB # 781580

												··	
								L	OG OF	BORIN	IG NO.	è	
	WNE					•				AR	CHITECT-E	NGINEER	
		11101	4 COV	1PANY	CF AMS	ERICA							
1	ITE									t t	DJECT NA		_
` <u>_</u>	AV E	NPOF	RT WC	RKS :	RIVER	RDALE,	, IOW,	A		WAS	TE LAGO	ON STABILIZAT	ON
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- lbs./ft.³	Unified Class. Symbol	Depth	Elevation	SROUND	Descrip	
					300								
1	ST	24	15		9000+	19.2	109.				W	FILL - SANDY C ITH OCCASIONA Dark Brown to	RUBBLE
2	ST	24	5		1500								·
		- 							5	576.8	(5.0)		·
	PA						<u> </u>		=] ,	CLITY OLAY TO	MACE CAND TOACE
3	AS	12							=			GRAVEL	ACE SAND, TRACE
	PA								10 -	•	Ē	Brown to Gray Chemical Odor	
		-							=				
4	AS	24										•	
'									15	566.8	(15.0)		
								,			E	BOTTOM OF BORI	NG @ 15.0
	NOT	E:	Samp to c	les 3 lient	and 4	give eld	n						•
			·				XIMATE E	SOUND!	ARY LINES B	ETWEEN SC	DIL AND ROCK T	YPES: IN-SITU, THE TRANSF	
_					RVATIO		4	_	,			BORING STARTE	
V.L.	9.	0	W.S.	OR W.D		A.E	→ _		con Con		S, Inc. Moines, IA	BORING COMPLI	
W.L.				B.C.R		A.C.R	닉 ``		Cansas City				
W.L.	1 4	0.6	24	hr			1					APPROVED RKL	JOB # 781580

		<u> </u>											
·L								L	OG OF	BORII	NG NO.	16	
Į.	WNE									AR	CHITECT-E	NGINEER	
-		I NUN	CC	:FANY	OF AME	RICA						·	·
•	ITE AVEI	1PCR	T WO	RKS:	PIVERD	ALE,	I OWA				OJECT NAI	ME DON STABILIZATIO	NC.
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Uncontined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- lbs./ft. ³	Unified Class. Symbol	Depth	Elevation	GROUN	Descriptio ND SURFACE ELEVA	
	ST	12	_						=			FILL-SANDY SILT	, TRACE CLAY,
		1.2.										WITH CINDERS AND Dark Brown	ID RUBBLE
 	PA				<u> </u>				=	•		Dark Drown	
2	ST	18	6			39.1			, =	572.8	(5.0)		ł
	PA							.	5 —			SILTY CLAY, TRA	CE SAND AND
7	45											GRAVEL, WITH OC	
	PA											SEAMS Gray to Dark Gr Strong Chemical Small lenses of	ay Odor
									15	562.8	(15.0)		'
•	NO	E:	Sar †o	ples clien	3 and † in f	4 gîv ield	en					BOTTOM OF BORI	NG @ 15.0
	ТН	E STRA	TIFICATI	ON LINES F	EPRESENT	THE APPRO	XIMATE E	BOUNDA	RY LINES 8	ETWEEN SO	OIL AND ROCK T	YPES: IN-SITU. THE TRANSITION	MAY BE GRADUAL
	WAT	ER L	EVEL	OBSE	RVATIO	NS	T					BORING STARTED	12-15-81
Ī.L.	4.				12.0	A.8		Terra	con Con	Isultani	ts, Inc.	BORING COMPLET	
W.L.				B.C.R		A.C.R	_	sar Rap		port Des	Moines, IA	RIG CME 55	FOREMAN SM
W.L.	3.	0 @	24	hrs			7		enses City	FFIGNITA,	nd	APPROVED R KL	JOB = 781580

•

.

			· · · · · ·					L	OG OF	BORIN	NG NO. 1:	
1	WNE				^-					AR	CHITECT-ENGINEER	
		Hæ	. 10	A-VIIA	CF AM	ERICA						
F	ITE NAV F	NPO	RT W	ORKS .	RIVE	RDALF	I OW	IA		ı	STE LAGOON STABILIZATION	
1				1			,			1.,,,,		
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft.3	Unified Class. Symbol	Depth	Elevation	Description ちっち GROUND SURFACE ELEVATION = 587.0	
				ļ	 			-	=	·	FILL-MIXTURE OF CLAYEY SILT	Γ,
1 2	ST ST	18 12	3		ļ	17.1 22.3			=		TRACE SAND AND SILTY CLAY, WITH OCCASIONAL RUBBLE,	
-	3					22.5		-	=		Dark Brown and Dark Gray Chemical Odor below 2.5	
	PA								5		Chemical odor below 2.5	
	ΓΛ.											
3	AS	12	*							560 5	3(8 5)	
									=	569.0	5(8,5) NOTE 1	
									10	٠	BOTTOM OF BORING @ 9.0	
	NO.	·		10 47					=		BOTTOM OF BORTING & 9.0	
	NO	E:		ie #3	giver	TO 0	lien					
									=		NOTE 1:	
`												
									=		FILL - CONCRETE RUBBLE Dense	
	-										Massive	
									<u> </u>			
						·	i				NOTE 2:	
	ļ										Boring location moved and r	
		-							_=		drilled due to obstructing	<u>-</u>
									_		concrete at 8.0' at first	
							'		Ξ		location.	
									=			
												J
	j											
											1	j
	ТН	E STRA	TIFICATI	ON LINES A	REPRESENT	THE APPRO	OXIMATE I	BOUNDA	ARY LINES 8	ETWEEN SC	OIL AND ROCK TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL.	
					RVATIO		T				BORING STARTED 12-15-81	
	2.0		W.S.		. None		→ _		con Cor			
W.L.	<u> </u>		A 2	B.C.R	<u>. </u>	A.C.R			pids Daven Kanses City		KS RIG CMF 55 FOREMAN STATES	

								L	OG OF	BORIN	IG NO.	4	
\$	31144									AR	CHITECT-E	NGINEER	
		11	007	PANY '	<u> </u>	RICA							·
1	ITE				====		OLIA			ı	OJECT NAI		15.1
<u> </u>	4.V.Eñ.		T WC)RKS:R	IVERDA	LE, [OWA	-	γ	I WA	T LAGO	OON STABILIZATIO	
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft.3	Unified Class. Symbol	Depth	Elevation	GROUND	Description SURFACE ELEVATI	
1	ST	18	10			19.2	106.9					FILL-MIXTURE C	F SANDY SILT,
 '	31	10	10		ļ	19.2	00.]		}	AND SILTY CLAY	W/OCCASIONAL
										•	[Reddish Brown	to Dark Brown
	PA								5 1111				
<u> </u>													·
}				1									
2	AS	60	*					ļ	10	•			
					ľ							·	
]						567.8	(13.0)		
									3				
'									15			BOTTOM OF BORI	NG @ 13.0
1								l	=	,			
	_								_=				
	TOM	Ε:			iven	to cl	ient			,			
			111 1	ield	1				-				
							'			1	•		•
									\exists				·
,		1											
									\exists				
							ĺ						
				}									}
									\neg				
									▏∃				1
													Ì
	THI	E STRA	TIFICAT	ON LINES F	REPRESENT	THE APPRO	STAMIX	BOUND/	ARY LINES BI	TWEEN SO	IL AND ROCK T	YPES: IN-SITU. THE TRANSITION	MAY BE GRADUAL
	WAT	ER L	EVE	OBSE	RVATIC	NS	T					BORING STARTED	12-15-81
	12.			OR W.D	 -			Terra	con Con	sultant	s, Inc.	BORING COMPLETE	
W.L.				B.C.R		A.C.R	⊣ -	dar Rap	oida Davens	ort Des	Moines, IA	RIG CME 55	FOREMANSM
WI	T _						7	,	Cansas City	WICHITAL K		APPROVED DEL	IOB = 701 500

								L	OG OF	BORIN	IG NO.	1.7	
()	₩1.5									ARG	CHITECT	NGINEER	
			4 00	HPALIY	r.s 21.1 	£= :							······································
1	ITE	NOO	77 W	ODKC.	RIVER	ראו ב -	1040	L			OJECT NAI	ME DON STABILIZATIO	٠.
-)4V =	·	KI W	UKNS:	RIVER	DALE,	TOWA	` 	1	1 100.	I LAGO	JON STABILIZATIO	41
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- lbs./ft.³	Unified Class. Symbol	Depth	Elevation	GROUND	Descriptio SURFACE ELEVATI	
	C.T.	1,5				 	00 1	-	=			FILL- SANDY CI	AYEY SILT,
	PA	12	8_			14.8	09.1		5	575.9	(5.0)	TRACE GRAVEL AN WITH OCCASIONA Brown to Dark	ND CINDERS L RUBBLE Brown
		L	<u> </u>	<u> </u>		ļ	<u> </u>	<u> </u>	=			SAND, TRACE GR	
2	AS	12	 					-				OCCASIONAL RUB Dark Brown	<u>BLE</u>
									10			Strong Chemica	l Odor
	PA		}						''			-	
3	AS_	12						_		567.9	(13.0)		······································
	топ		Samp to d	le 2 lient	and 3 in fi	giver eld.						BOTTOM OF BORIS	NG @ 13.0
	THI	E STRA	TIPICATI	ON LINES F	EPRESENT	THE APPRO	OXIMATE (BOUNDA	ARY LINES B	ETWEEN SO	IL AND ROCK 1	YPES: IN-SITU, THE TRANSITION	MAY BE GRADUAL
	WAT	ER I	LEVEL	OBSE	RVATIO)NS	1					BORING STARTED	12-15-81
	11.				. 12.0		<u>.</u>	Terra	con Cor	sultant	s, Inc.	BORING COMPLETE	
W.L.				B.C.R		A.C.F	⊸	dar Rap	pids Daven Cansas City	port Des	Moines, IA	RIG CME 55	FOREMAN SM
wi	4 () a	24 h	-			7	,	THIS CITY	TTICHITE, R		APPROVED RKI	IOB = 781580

						• •		L	OG OF	BORIN	IG NO. 12				
Ü	WNE	t.								ARC	CHITECTIEN	GINEER			
_		11:05	0.00	PANY	CF AM	RICA									
1	ITE IAV =	NPC5	er we	ORKS:	RIVERD)AI =	I OW A				STE LAGO	E ON STABILI	ZATIC	M	
, —				T		,,,,,	1011.				1		2////		
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft.3	Unified Class. Symbol	Depth	Elevation		JRFACE ELE		N = 577.0	
	ST	18	12		5000	14.9	106.4				TF	ACE GRAVE			_ `
	51	5	5		*5000					•	1/4 0\ 5.	IBBLE Town to Rec	id i c b	Brown	,
	3,				3000	, , , ,	112.			573.0	(4.07 61	OWIT 10 .160	30 1511	- Ci Own	
3	PA AS	24							5 -		<u>TR</u> Da	LTY CLAY, RACE GRAVEL ork Gray rong Chemi	=	-	
	PA								10			•			
		7.6								565.0	(12.0)				
4	AS	36										EATHERED L	IMES	TONE	
		Cal	Sar	nple 3	nd Pe and n fie	1 giv			15 :		·	TTOM OF BO			
	The	E STRA	TIPICAT	ON LINES	REPRESENT	THE APPR	OXIMATE	BOUND	ARY LINES B	ETWEEN SO	OIL AND ROCK TYP	PES: IN-SITU, THE TRA	NSITION	MAY BE GRADUAL	
-	WAT	ER I	EVE	LOBSE	RVATIC	NS			<u> </u>			BORING STAF	RTED	12-15-81	
W.L	Nor	ne	w.s.	OR W.D	None		→		con Cor			BORING COM			\Box
W.L	_1 .			B.C.R		A.C.I	ર. °•		pids Daven Cansas City		<s td="" ⊦<=""><td>RIG CME</td><td></td><td>FOREMAN SM</td><td> </td></s>	RIG CME		FOREMAN SM	
lwı	1 1	Vone	a 2	4 hr.			1		,		1	APPROVED 0	261	JOB = 701500	

_												
L								L	OG OF	BORII	NG NO.	15
	WNE L			reall.	OF AME	PICA				AR	CHITECT-E	NGINEER
1	ITE AVE	io0:	et wo	ORKS :	RIVER	DALE,	, I OW	A			OJECT NAM ASTE LAGO	ME DON STABILIZATION
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft. ³	Unified Class. Symbol	Depth	Elevation	GROUND	Description SURFACE ELEVATION = 578.1
1	ST	24	18		*4000	20.1	101.4					FILL-CLAYEY SILT, GRAVEL, CINDERS, CONCRETE FRAGMENTS, TRACE SAND
2	ST	24	20		*4000	18.9	106.0		5	573.6	(4.5)	Dark Brown
3	ST	24	24						10 11			SANDY SILTY CLAY, TRACE GRAVEL (OIL SATURATED) Gray to Dark Gray Thin gravel layer @ 10.0
4	ST	24	-						15	563.1	(15.0)	
	-	* NO		Sampi	d Hand e 3 g + in	iven	to	e†er			NOTE:	Boring location moved and redrilled due to obstruction @ 7.5 at first boring location.
		-								-		
	TH	E STRA	TIFICATI	ION LINES F	REPRESENT	THE APPR	OXIMATE E	OUND/	ARY LINES B	ETWEEN S	OIL AND ROCK T	YPES: IN-SITU. THE TRANSITION MAY BE GRADUAL
	WAT	ER L	EVEL	OBSE	RVATIC	NS	\top					BORING STARTED 12-15-81
W.L.				OR W.D		A.E	5.] ·	Terra	con Con	sultan	ts, Inc.	BORING COMPLETED 12-15-81
W.L.				_		A.C.F	⊣	sar Rac	olds Daven	port Des	Moines, IA	RIG CME 55 FOREMAN SM
WI	Kansa									Wichita.	KS .	APPROVED DEL LOB # 781580

PROJECT	Alcoa, Davenport	DATE 6/14/84 SF	EET 1 OF 1
LOCATION	Α .	DRILLING CONTRACTOR	Albrecht
WELL NUMBER	Shallow	DRILLING METHOD	Air Rotary
SAMPLE DESCR	RIBED BY John R. Mildenberger	SAMPLING METHOD	Cuttings

SAMPLE NUMBER	SAMPLE DESCRIPTION	DRILLING COMMENTS	DEPTH INTERVAL (FEET)	THICKNESS (FEET)
	Sand, silt and limestone fragments, moist, brown, glass, roots, rebar, fill		0-9.5	9.5
	Limestone, float or fill	Hard Drilling	9.5-11	1.5
	Silt, some fine sand and organics, very moist, dark brown		11-13	2
	Same (oil odor)		13-16	3
	Clay, some silt, very moist, green, plastic		16–17	1
-				
				·
		-		·

PROJECT	Alcoa, Davenport	DATE 6/13/84 SH	EET <u>1</u> OF <u>1</u>
LOCATION	A	DRILLING CONTRACTOR	Albrecht
WELL NUMBER _	Intermediate	DRILLING METHOD	Air Rotary
SAMPLE DESCRI	BED BY John R. Mildenberger	SAMPLING METHOD	Cuttings

	AMPLE JMBER	SAMPLE DESCRIPTION	DRILLING COMMENTS	DEPTH INTERVAL (FEET)	THICKNESS (FEET)
		Sand, silt and limestone fragments, moist, brown, debris, metal, fill	Note: Driving casing compressed formation, depths		16
		Silt and clay, moist, brown, little organics	may be distorted in the overbur- dened		1
		Silt and clay, moist to very moist, black, oil odor		17–18	1
		Silt and clay, moist, greenish grey	Rock encountered at 19 ft.	18–19	1
-		Limestone, microcyrstalline, occasionally vesicular, light brown to light grey, low permeability except fair where fractured or vesicular, pyrite	Small amount of water encountered at 29 ft.	19-49.5	30.5
		Shale, grey to green, friable, calcareous, low permeabil-ity, dry		49.5-55	5.5
		Limestone, microcrystalline, occasionally vesicular and fossilferous, light grey, low permeability except good where fractured or vesiclar, pyrite, crystals well developed in vesicles, occasional thin blue-green shale seams		55-150	95
			-		

PROJECT	Alcoa, Davenport	DATE 6/14/84 SH	EET 1 OF 1
LOCATION	Α	DRILLING CONTRACTOR	Albrecht
WELL NUMBER	Deep	DRILLING METHOD	Air Rotary
SAMPLE DESCR	IBED BY John R. Mildenberger	SAMPLING METHOD	Cuttings

SAMPLE NUMBER	SAMPLE DESCRIPTION	DRILLING COMMENTS	DEPTH INTERVAL (FEET)	THICKNESS (FEET)
	Sand, silt and limestone fragments, moist, brown, metal, etc., fill		0-11	11
	Silt and clay, moist, brown		11-14	3
	Silt and clay, moist to very moist, black, oil odor		14-15.5	1.5
	Clay, some silt, moist green, plastic		15.5-19	3.5
	Limestone, microcrystalline, light grey, pyrite	Rock encountered at 19 ft. Small amount of water encountered at 30 ft.	19–28	9
	Shale, grey to green, friable, calcareous			6
	Limestone, microcyrstalline, occasionally vesicular, light grey, low permeability except fair where fractured or vesicular, pyrite	Water production increases to 1 GPM at 44 ft.	34-50	16
	Shale, grey to green, friable, calcareous, low permeabil- ity, dry		50-55	5
	Limestone, microcrystalline, occasionally vesicular and fossilferous, grey to white, low permeability except good where fractured or vesiclar, pyrite, crystals well developed in vesicles, occasional thin blue-green shale seams	Water production from fractures at 64 ft., 80 ft., 130-150 ft., 200 ft. and 210 ft.		245

PROJECT	Alcoa, Davenport	DATE 6/06/84 SHE	ET <u>1</u> OF <u>1</u>
LOCATION	В	DRILLING CONTRACTOR	Albrecht
WELL NUMBER	Intermediate	DRILLING METHOD	Air Rotary
SAMPLE DESCRI	BED BY John R. Mildenberger	SAMPLING METHOD	Cuttings

SAMPLE NUMBER	SAMPLE DESCRIPTION	DRILLING COMMENTS	DEPTH INTERVAL (FEET)	THICKNESS (FEET)
	Silty, some fine sand, little clay, limestone fragments, trace glass fragments and organics, moist, dark brown, fill		0-5	5
	Silt and clay, moist, brown, plastic		5-7.5	2.5
	Clay and silt, trace limestone fragments, moist, pale green		7.5-8.5	1
	Limestone, microcrystalline, occasionally vesicular, light grey, low permeability except fair where fractured or vesicular, pyrite	Rock encountered at 8.5 ft. Small amount of water encountered at 40 ft.	8.5-43	34.5
_	Shale, grey, friable, calcareous, low permeability, dry		43–55	12
	Limestone, microcyrstalline, occasionally vesicular and fossilferous, light grey, low permeability except good where fractured or vesicular, pyrite, crystals well developed in vesicles, occasional thin blue-green shale seams	Water production from fractures at 73 ft. 117 to 150 ft.		95

PROJECT	Alcoa,	Davenpor	<u> </u>	DATE _	6/07/84	SHEE	т1	OF	1
LOCATION	В			DRILLI	NG CONTRACT	ror	Albrec	ht	
WELL NUMBER _	Deep		· 	DRILLI	NG METHOD		Air Ro	tary	
SAMPLE DESCRI	BED BY	John R.	Mildenberger	SAMPLI	NG METHOD		Cutting	gs	
	•								

SAMPLE NUMBER	SAMPLE DESCRIPTION	DRILLING COMMENTS	DEPTH INTERVAL (FEET)	THICKNESS (FEET)
	Silty, some fine sand, little clay, limestone fragments, trace glass fragments and organics, moist, dark brown, fill		0-5	5
	Silt and clay, moist, brown, plastic		5-7	2
	Clay and silt, trace limestone fragments, moist, pale green	Book analysis	7–8	1
	Limestone, microcrystalline, occasionally vesicular, light grey, low permeability except fair where fractured or vesicular, pyrite, occasional thin blue-green shale seams	Rock encountered at 8 ft. Small amount of water encountered at 25 ft.	8-43	35
	Shale, greyish green, friable, calcareous, low permeabil-ity, dry		43–59	16
	Limestone, microcyrstalline, occasionally vesicular and fossilferous, light grey, low permeability except good where fractured or vesicular, pyrite, crystals well developed in vesicles, occasional thin blue-green shale seams	at 61 ft. 70 to 90 ft., 120 to 200	59–300	241

PROJECT	Alcoa, Davenport	DATE 5/30/84 SH	EET 1 OF 2
LOCATION	<u>C</u>	DRILLING CONTRACTOR	Albrecht
WELL NUMBER	Intermediate	DRILLING METHOD	Air Rotary
SAMPLE DESC	RIBED By John R. Mildenberger	SAMPLING METHOD	Cuttings

SAMPLE NUMBER	SAMPLE DESCRIPTION	DRILLING COMMENTS	DEPTH INTERVAL (FEET)	THICKNESS (FEET)
	Topsoil		0-1	1
	Silt and clay, trace fine sand moist, brown		1-8	7
	Clay, little silt, moist to very moist, reddish brown, plastic		8-9.5	1.5
	Clay, little to some silt, moist grey		9.5-10	0.5
	Silt, some clay, trace fine sand, moist to dry, light yellow brown to brown		10-11.5	1.5
	Limestone, microcrysalline, very light grey to white, pyrite	Rock encountered at 11.5 ft.	11.5-12.5	1
-	Shale, dry, grey, friable, calcareous, low perme-ability		12.5-14.5	2
	Limestone, microcyrstalline, occasionally vesicular, grey to white, low permeability except fair where fractured or vesicular, pyrite well developed in vesicles	Water encountered at 20 ft. production increases as fractures encountered at 23.5 ft. and 34 ft.	14.5-36	21.5
	Shale, grey, friable, calcar- eous, low permeabil- ity, some fine sand		36–50	14
		-		

PROJECT	Alcoa, Davenport	DATE 5/30/84 SH	EET 2 OF 2
LOCATION	C	DRILLING CONTRACTOR	Albrecht
WELL NUMBER	Intermediate	DRILLING METHOD	Air Rotary
SAMPLE DESCR	RIBED BY John R. Mildenberger	SAMPLING METHOD	Cuttings

SAMPLE NUMBER	SAMPLE DESCRIPTION	DRILLING COMMENTS	DEPTH INTERVAL (FEET)	THICKNESS (FEET)
	Limestone, microcrystalline, occasionally vesicular and fossilferous, grey to white, low permeability except good where fractured or vesiclar, pyrite, crystals well developed in vesicles, occasional thin blue-green shale seams	from fractures	50-150	100
-				

PROJECT	Alcoa, Davenport	DATE 5/30/84 SH	EET 1 OF 1
LOCATION	С	DRILLING CONTRACTOR	Albrecht
WELL NUMBER _	Deep	DRILLING METHOD	Air Rotary
SAMPLE DESCRI	BED BY John R. Mildenberger	SAMPLING METHOD	Cuttings

SAMPLE NUMBER	SAMPLE DESCRIPTION	DRILLING COMMENTS	DEPTH INTERVAL (FEET)	THICKNESS (FEET)
	Topsoil		0-1	1
	Silt and clay, trace fine sand and organics, moist, dark		1-8	7
	Silt and fine sand, little organics, dry to moist, dark brown		8-12.5	4.5
	Sand, fine, some silt, shale and limestone fragments, dry light greyish brown		12.5-13.5	1
	Shale, dry, greyish-green, friable, calcareous, low permeability	Rock encountered at 13.5 ft.	13.5–21	7.5
-	Limestone, grey, friable, calcareous, low perme-ability	Water encountered at 40 ft.	21-45	24
	Shale, dry, grey, friable, calcareous, low perme-ability		45-49	4
	Limestone, microcyrstalline, occasionally vesicular and fossilferous, grey to white, low permeability except good where fractured or vesicular, pyrite, crystals well developed in vesicles, occasional thin blue-green shale seams	Water production from fractures at 50 ft., 65-74 ft. Difficult to d i s t i n g i s h furhter fractures with discharge >60 gpm	49-300	251

DI GEOLOGIC WELL-LOG

Depth Interval (Feet)	Description
0 - 6.0	Reworked soils - overburden: silt, little fine sand and clay, brown at top, dark brown with depth, damp, greasy texture, rich in organics.
	Note: Thin peat layer directly overlying bedrock surface.
7.0 - 29.5	Limestone, calcite; light to medium grey; fine grained matrix; highly weathered from 7 - 15 feet; low permeability; rock is fissured more than it is fractured, fissures typically coated with a greenish-grey (10 GY5/2) shale; solution cavities, secondary calcite crystallization observed; vuggy; fossiliferous; sucrosic in places; Fe + Mn staining common in limestone from 7 to 20 feet.
•	Note: Some evidence of water production between 28 and 30 feet.
29.5 - 32.5	Shale, very fine grained; Possibly saturated at top (difficult to discern); light olive grey (5Y 6/1) different from shaley deposits along fissures in limestone-probably dissimilar origins; fissile; greasy texture.

DS GEOLOGIC WELL-LOG

Depth Interval (Feet)	Description
0 - 6.75	Unconsolidated sediments and reworked soils
6.75 - 29.0	Limestone, calcite; light to medium grey; fine grained matrix; highly weathered from 7 - 15 feet; low permeability; rock is fissured more than it is fractured, fissures typically coated with a greenish-grey (10 GY5/2) shale; solution cavities, secondary calcite crystallization observed; vuggy; fossiliferous; sucrosic in places; Fe + Mn staining common in limestone from 7 to 20 feet. Note: Some evidence of water production between 28 and 30 feet.
29.0 - 29.2	Shale, very fine grained; Possibly saturated at top (difficult to discern); light olive grey (5Y 6/1) different from shaley deposits along fissures in limestone-probably dissimilar origins; fissile; greasy texture.

DI GEOLOGIC WELL-LOG CONTINUED

Depth Interval (Feet)	Description
32.5 ~ 106.0	Borderline between calcitic dolomite and dolomitic limestone definitely lower CaCo ₃ content than limestone unit above shale; calcite; very pale orange (10 YR 8/2) to a yellowish grey (5Y 7/2); low matrix permeability, high secondary permeability; fissured, shaley material interspersed along fissures; calcite recrystallization, trace pyrrhite crystals observed; vuggy (solution cavities); sucrosic; fossiliferous. Bedrock texture, color, and grain size more homogenous in this interval than other intervals. Crystalline encrustations common in this zone along fractue planes, probably the result of precipitation from solution/ground water.
	Note: Shaley material along fissures and fractures has appearance and texture of a weathered calcareous mud.
	Fractured at 43 ft.; 45 - 46 ft.; 48 - 50 ft.; Initial water production 68 - 70 feet; 74-76 ft.; 78-79; Very fractured 84 - 87; noticeable increase in water production
106 - 150	Similar to previous interval: Calcitic dolomite or dolomitic limestone, calcite; fine grained matrix; predominantly yellowish grey (5Y 7/2) with very pale orange streaks (10 yr 8/2) and dark horizontal banding (paleo-organic rich strata); Sucrosic; vuggy; fossiliferouus; calcite recrystallization of fossils; trace pyrrhite; soft; brittle.
	Note: Highly fossiferous from 130 - 140 ft.
	Highly fractured from 95 - 125 ft., primary water producing zone

END OF BOREHOLE

DD GEOLOGIC WELL-LOG

Depth Interval (Feet)	Description
0 - 2	Top soil and gravel fill - saprolitic appearance
2 - 2.5	Weathered calcitic dolomite, grey, dry
2.5 - 3.0	Silt, little clay and fine sand, assorted calcitic dolomite gravel, light brown, dry
3.0 - 4.0	Silt and fine sand, dark brown, moist, lighter brown with depth
4.0 - 6.5	Fine sand and silt, dark grey to black, damp rich in organics
6.5 - 30.0	Thin horizon (I") of weathered shale or peat above bedrock. Bedrock - Calcitic dolomite, grey, dry, solid, competent. Softer material at 14' - peat or shale horizon, shale interspersed in cuttings, no distinct horizons observed between 14 and 30 feet.
32 - 33	Water production increase from .10 gpm25 gpm (gallons per minute)
30 -34	Brown shale horizon, very fine grained

DD GEOLOGIC WELL-LOG CONTINUED

Depth Interval (Feet)	Description
34 - 80	Calcitic dolomite - pale brown, saturated, solid, occasional shale cuttings (possibly kankaki formation) Fracture zones 64 - 67; 79 - 80.
	Note: Water production up to 2-3 GPM
80 - 93	Calcitic Dolomite; medgrey; saturated; solid, competent; trace shale cuttings. Fractured zones from 87-89; 90-91
93 - 132	Back into pale brown calcitic dolomite saturated, hard, sucrosic, granular texture observed on some of the cuttings.
	Note: H ₂ S odor noticed at 100' gets stronger with depth Highly fractured from 100 - 120 feet, major water producing zone (20 to 30 GPM by 130 feet)
132 - 134	Pale green shale, greasy texture
134181	Pale brown calcitic dolomite with shale cuttings interspersed. Fracture zones 144 - 148; 167 - 170.
181 - 300	Light grey to buff calcitic dolomite, solid, hard, porous and permeable with manganese staining. Strong H ₂ S odor still present. After 220 ft., H ₂ S odor less noticeable and pervasive.
	Note: More resistant rock and not fractured much.
·	Note: Detailed description of bedrock formation between 6 and 150 feet provided in geologic log for well DI.

Boring/	WellES	S	.Project/No	OHO414I	[AO2			Page	1	of	1
				, Iowa							
Total De	epth Drille	ed <u>2</u>	4feet	Hole Diameter	6 1 i	inches	Type of Sa Coring Dev	mple/ vice	<u>Gra</u>	<u>b</u>	·
Length of Corin	and Diar ng Device	meter e			, <u> </u>		Samplir	ng Interval _	Conti	nuous	feet
				☐ Surveyed							
	Fluid Us	ed	Air				Drilling	MethodA	<u>ir Ro</u>	tary	
Drilling Contrac	tor A1	brech	t			Dril	Her Jeff H	lallHel	per <u>Br</u>	ian Co	olson
Prepare By	d Da	vid L	. O'Brien				Hamme Weight	r C	lammer)rop		inches
Sample/0 (feet below From	Core Depth land surface) Core Recovery (feet)	Pressure or			Sam	nple/Core Descript	tion			
0	7			Fill: silt	and fir	ne sand	i, orange	brown gr	ading	to ta	an,
_				cohesive, d	amp						
7	14			Limestone,				<u> </u>			
				- 10' seam							2"
				- 14 seam							
14	24			Limestone,							no
-				- seams of							
				5005	5520		20 04.1 2				
-							· · · · · · · · · · · · · · · · · · ·				
	-					*		<u> </u>			
									<u></u>		
									·		-
							<u></u>				
		-							 .		
											
	1								<u> </u>		
						 					
										-	
											
1					•					•	

Boring/	WellF	<u> </u>	Project/No	OHO 414IAO2 Page 1 of 2
Site Location	n Alc	coa, Da	venport,	Iowa Drilling 1/16/89 Drilling Completed 1/18/89
)feet	Type of Sample/ Hole Diameter 6½ inches Coring Device Grab
Length of Corin	and Diar ng Device	meter e		Sampling Intervalfe
Land-Su	urface Ele	ev	feet	□ Surveyed □ Estimated Datum
	Fluid Us	ed	Air	Drilling MethodAir Rotary
				Driller <u>Jeff Hall</u> Helper <u>Brian Colson</u>
Prepare By	d <u>Dav</u>	uid_L.	O'Brien	Hammer Hammer Dropinche
Sample/0	Core Depth land surface		Time/Hydraulic Pressure or	Sample/Core Description
0	7			Fill: silt and fine sand, black grading to a brown,
				cohesive damp
				- 5.5 limestone boulder or shelve, tan
7	17			Limestone, tan, fine grain
				- 14-17 seams of grey shale moderately hard
17	28			Limestone, tan, with black banding with calcite
•				crystalization
				- 23-25 fractured with green shale and lt. brown silt
28	51			Limestone, tan, fine grain, less weathered than above
	-			- 37', water production 3-5 gpm
				41-42' fracture water production 10 gpm
51	52			shale, green, soft
52	80		,	Limestone, tan, with seams of green shale, fractured
				-fracture with increased water production 12 gpm
				-67' green shale seam
				-68' faint H ₂ S odor
80	150			Limestone, tan, fine grain with seams of green shale,
				fractured
				- 88-90 seams green, shale, with the H ₂ S odor becoming
				stronger

SAMPLE/CORE LOG (Cont.d)

Boring	Well	EI		Page 2 of 2
Prepare	ed By	Davi	d L. O'Br	ien
	Core Depth land surface	Recovery	Time/Hydraulic Pressure or Blows per 6 inches	
From	То	(feet)	inches	Sample/Core Description
80	150			- 92-117 several fractures throughout
				- 127-137 seams green shale fractured
				,
· 				
•				
	-			
			li.	
		-		
			- 	
			i	
				
				<u>. </u>

Boring/	WellI	ED	Project/No _	OHO414IAO2 Page 1 of 2
Site Location	n <u>Alc</u>	coa, Da	avenport,	Iowa Drilling Started 1/11/89 Drilling Completed 1/17/89
Total De	epth Drill	ed29	97feet	Type of Sample/ Hole Diameter 6/4 inches Coring Device Grab
Length	and Dia	meter		Sampling Interval Continuous fee
				☐ Surveyed ☐ Estimated Datum
	Fluid Us	ed	<u>Air</u>	Drilling Method_Air_Rotary
Drilling Contrac	torA	lbrech	nt	
Prepare By	ed Day	vid L.	O'Brien	Hammer Hammer Hammer Union Hammer Ham
Sample/6 (feet below From	Core Depth land surface To) Core Recovery (feet)	Time/Hydraulic Pressure or Blows per 6 inches	Sample/Core Description
0	7			Fill; silt and fine sand, dark brown to orange brown,
				damp, no odor
7	19			Limestone, tan, fine grain
				- at 16 feet 3 inch shale seam
				- cuttings appear damp to moist
19	22			Shale, green, soft, damp to moist
22 .	25			Limestone, tan, fine grain
25	32			Shale, green to grey, saturated greasy texture
32	37_			Limestone, tan with green shale seams
i	-	:		- 32-35 seams of a siltstone grey, hard, saturated
37	44			Limestone, tan, fine grain, with green shale seams
44	53			Limestone grey and tan. fine grain
				- 52-53 seam of green shale
53	59		- 10-2	Limestone tan. fine grain with seams green and dark
				green shale, traces of pyrite
59	77			Limestone, tan, fine grain with decreasing seams of
				green shale and fractures
				- 75-80' water production 1-2 gpm
77	78			Shale, green, soft, greasy
78	90			Limestone, tan to grey, fine grain, more dolomitic

SAMPLE/CORE LOG (Cont.d)

Boring	/WellED	<u> </u>		Page2 of
Prepar	ed By	David	L. O'Brie	en
Sample (feet below From	/Core Depth w land surface) To	Core Recovery (feet)	Time/Hydraulic Pressure or Blows per 6 inches	Sample/Core Description
-				- 83' fracture increased water production to 5-6 gpm.
				- 87' water production increased 10 gpm with H_2S odor
90	100			Limestone, tan to grey as above with several seams of
				green shale
				- 100' fracture water production increased to
			<u> </u>	15-20 gpm
100	165			Limestone, tan fine grain fractured, with seams of green
	-			and grey brown shale, trace pyrite
	1			- 110-125' water production increased to 20 gpm
165	174			Limestone, tan, fine grain more heavily fractured
·				- with some increased water production
174	175			Shela/chalk, white soft
175-2	200			Limestone, tan, fine grained
	-			- 193' water production gradually increasing with
				depth to 25-30 gpm
200	223			Limestone, tan, fine grain fractured
				- gradual water production to 5-6 gpm
223	297			Limestone, white to tan fine grain, hard
				- 233-236' fractured, increased water production to
				6-8 gpm
				- 238 fracture 1 foot
		·		- 241 fracture l foot
			-	- 250-251 fractured

. – -	-			
~			•	OHO414IAO2 Page 1 oi 1
Site Location	Alc	oa, Da	avenport.	Drilling Drilling Lowa Started 1/24/89 Completed 1/25/89
Total Dep	oth Drille and Dian	ed <u>28</u> neter	feet	Type of Sample/ Coring Device Grab Sampling Interval Continuous feet
_	•			☐ Surveyed ☐ Estimated Datum
				Drilling Method_ Air_Rotary
Drilling				Driller Jeff Hall Helper Brian Colson
				Hammer Hammer Weight Drop inches
Sample/Co (feet below la From	re Deoth		Time/Hydraulic Pressure or	
		<u>(,</u>		
0	5			Fill: silt/clav fine sand. black grading to orange
				brown. damp cohesive
5	10			Limestone, tan, fine grain
10	12			Limestone, grey, fine grain, fractured
12	18		,	Limestone, tan, fine grain with grey limestone intermixing
18	20			Limestone, tan, fine grain
				- 18' fracture water produced at 1 gpm
20	28			Limestone tan, fine grain with black speckling
				- 20' iron staining tan limestone
	-			- 24-25' grey limestone interbedded
				- 27' fracture with water production increasing to
	·		·	3-5 gpm, iron staining
			<u></u>	
				
- 1				
			<u> </u>	

A_TT_10

Boring/	Well	FI	Project/No	OHO414IAO2 Page 1 of 1
Site Locatio	n <u> </u>	lcoa, o	davenport	Iowa Drilling Drilling Started 1/24/89 Completed 1/26/89
			Ofeet	Type of Sample/ Hole Diameter 8 ³ /4,6 <mark>/</mark> 4inches Coring Device <u>Grab</u>
Length of Corin	and Dia ng Devic	meter e		Sampling Intervalfee
				□ Surveyed □ Estimated Datum
	Fluid Us	ed	Air	Drilling Method Air Rotary
Drilling Contract	tor	Albı	recht	Driller_Jeff Hall Helper_Brian Colso
Prepare By	ed	David	L. O'Brie	Hammer Hammer n Weight Dropinche
Sample/	Core Depth		Time/Hydraulic Pressure or	Sample/Core Description
0	4			Fill; silt/clay and v. fine sand, black grading to
				orange brown cohesive, damp
4	21			Limestone, tan, fine grain
				- 12' grey limestone interbedded
				- 21' green shale seam 0.5'
21	33			Limestone, tan, fine grain
-			;	- 26-27' fractured weathered limestone water
			'	production 3 gpm
			·	- 27-33' black and grey limestone mixing with pyrite
	-			crystallization, water production increased to 5-7 gpm
33	40			Limestone, tan, fine grain with green shale packets.
				- 40' green shale seam
40	85			Limestone, tan, fine grain with samll green shale seams
				locally vesicular with pyrite crystals
				- 47' increase water production to 7-10 gpm
				- 58-79' green shale seams
85	150		'	Limestone, tan, fine grain, fractured with interbedded
				grey limestone and seams of green shale
				- 92' seam green shale
			.	- 112-130' several fractures

				OHO414IAO2						
Site Location	n <u>Alc</u>	oa, Da	venport,	Iowa	Drilling Started	1/19/89	Drilling _ Complete	ed1	/25/8	9
Total De	epth Drille	ed	feet	Hole Diameter $\frac{8^3}{4}$	6 14 inches	Type of Samp Coring Device	ole/ e	-		
Lenath	and Diar	neter								
				☐ Surveyed						
Drilling	Fluid Use	ed	Air			Drilling Me	ethod <u>Ai</u>	r Rot	ary	
				cht						
Prepare By	ed Da	vid L.	O'Brien			Hammer Weight	H	lammer Irop <u> </u>		inches
Sample/o (feet below From	Core Depth land surface) To	Core Recovery (feet)	Time/Hydraulic Pressure or Blows per 6 inches		Sa	ample/Core Description				
	4			Fill, silt/cl	27 7227	fine cond or	rango hr	OVE	cohes	ivo
0	4				ay, very	Tille Sand Oi	lange of	OWII,	Cones	IVE
				damp			 -			
				- Limestone	ledge at (0.5-1'				
4	10			Limestone, ta	n, fine g	rain, with g	grey lim	eston	<u>e</u>	
				interbedded						·
10	11			shale, green,	soft grea	asy, moist t	o satur	ated		
11 ·	13			Limestone, ta	n, fine gr	rain				
13_	28		·····	Limestone, bro	own, less	weathered t	han abo	ve		
				- 13-13.5' so	oft green	shale seam				
				- 22' water	production	n 1-3 gpm				
28	30			Limestone tan	with blac	k banding v	esicula	r wit!	n pyr:	ite
				crystals						
					oxid a tion	n increase t	:o 5-10	g DM		
30	33			Limestone, tar						
				with pyrite cr						
22	39					-le bd:	: 1			
33	79			Limestone, tar	· MICH DIS	ick banding	vesicula	aı Wli	'u bai	ile
				crystals		•				
39	65	-		Limestone, tar	i, fine gr	ain with sa	mll sear	ns of	green	1
·				shale						
				- 39' fractur	e with wa	ter product	ion inc	reasir	ig to	15 gpm

SAMPLE/CORE LOG (Cont.d)

Boring∧	WellF	7D		Page 2 of 2
Prepare	ed By <u>r</u>	avid L	. O'Brier	1
Sample/0 (feet below From	Core Depth land surface	Core Recovery	Time/Hydraulic Pressure or Blows per 6 Inches	Sample/Core Description
				- 52' faint H ₂ S odor - 59' green shale seam
65	91			Limestone, tan, fine grain with semas of green and grey
				shale, vesicular, fractured
				- 65-73' water production increased to 20 gpm
91	92			Shale, green soft
92	98			Limestone tan fine grain with grey limestone interbedded
				fractured
				- water production increased to 30-40 gpm
98	133		··	Limestone tan, fine grain with some fractures, locally
-				vesicular
				- 128-133' several seams of green shale
133	193		<u>-</u> -	Limestone tan, fine grain, locally vesicular with pyrite
	-			crystallization, with small seams of green and grey shale
				fractured
193	240			Limestone, tan, fine grain solid
				- borehole cased off to 200'
				- 200-217' water production 1-3 gpm
				- 225' water production increased
				- 230' water production increased to 5-10 gpm (Maximum
				production for air pressure and borehole diameter)
240	297			Limestone, pale tan to white, fine grain, fractured

SOIL TESTING SERVICES OF IOWA, INC.

CEDAR RAPHOS

IOWA CITY

DAVENPORT

DES MOINES

AUGER BORING DATA

PROJECT: ALCOA BLDG. EXPANSION 823
RIVERDALE, IOWA

DATE: 5-1-79

STS1 JOB. NO. 779504

BORING	ELEVATION	DEPTH	SOIL & ROCK CLASSIFICATION	WATER LEVEL
R12W		0.0 - 2.0 2.0 - 6.0	(FILL) SANDY SILT TRACE GRAVEL, Brown SILTY SAND, BROWN	5.0 WS 2.0 AB
		6.0 -12.5	SILTY CLAY, Grey, & Brown	·
-		12.5 -13.0	GRAVEL	
		13.0 -14.5	CLAYEY SHALE, Grey	
		14.5 -15.5	WEATHERED LIMESTONE	·
			Auger Refusal @ 15.5	
		0.0 - 1.0	SANDY SILTY CLAY WITH GRAVEL, Brown	
		1.0 - 2.5	SILTY SAND TRACE CLAY, Brown	6.0 WS 3.0 AB
RIIW		2.5 -11.0	CLAYEY SILT TRACE SAND, Dark Brown to Brown	
	-	11.0 -21.0	CLAYEY SHALE TRACE WEATHERED LIMESTONE,	,
		21.0 -23.0	WEATHERED LIMESTON LAYER	
·		23 - 34	CLAYEY SHALE, Grey	<u>.</u>
	•	34 -35.5	WEATHERED LIMESTONE,	
			Auger Refusal @ 35.5	·
		0.0 - 2.0	(FILL) GRAVEL & SAND, RUBBLE, Brown	
		2.0 -11.0	CLAYEY SILT, Dark Grey to Brown	12' WS
		11.0 -12.0	FINE SAND TRACE GRAVEL, Brown	10' AB
·	•	12.0'-31.0	SHALE, Grey	
P		31.0 ~35.0	WEATHERED LIMESTONE	
• •			Auger Refusal @ 35	
			A TTT 1	

	LOG OF BORING NO. RIOW														
<u></u>		` 		·				L	OG OF						
	OWNER										ARCHITECT-ENGINEER				
	ALUMINUM COMPANY OF AMERICA SITE										OJECT NAM	(F			
	RIVERDALE, IOWA										BLDG. EXPANSION 823				
-	T		<u> </u>	· · · · ·				r —			<u> </u>				
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft.3	Unified Class. Symbol	Depth	Elevation		Description			
	SS	1.5	1.2	13	<u></u>	16.1			∃		(FILL) (1.5') <u>G</u>	ravel Brown Stiff			
		-			<u> </u>						SANDY	SILT, Brown, Medium			
2_		1.5	1.5	9_	<u> </u>	13.3		\vdash			<u> </u>				
3		1.5	0.8	8	*2000	39.1		CL	5 —			Y SILT,			
\vdash	PA	-									Brown Mediu	to Light Grey,			
4		1.5	1.5	_3	<u> </u>	26.9		CL_	=		neu i u	iii			
-	PA							-	\vdash						
5	SS	1.5	1.5	3	*1600	27.8		CL							
	PA								=		(12.0')				
إ	SS	1 5	_ ر	50/6	' ∻7000	11 2									
	PA				27000				\exists						
7_	SS PA	1.5	1.4	60	*9000	+16.6			15 —		CLAY	EY SHALE, , Very Dense			
8		ו כ	, ,	50./()							1 0.0,	, very belise			
<u> </u>	1	1.5	1.0	50/6	*9000	±13./			⊦ 						
	PA							<u> </u>	20 —						
9	SS	ِئا	1.0	50/6'	<u>*9000</u>	+14.9	-		\exists		(22.0')				
10	PA SS		0.5	1.0	*7600	1/			ᅡᅼ			EY SHALE TRACE WEATHERED			
		-5	حسا	-40	~.7 0 00	14-5			\exists		LIME	STONE) Grey, Dense			
11	PA SS	4	0.4	50/41	*9000·	<u> </u>			5	(250')				
	PA											5V 6VA 5			
12	<u>\$5</u>	. 3	-3	50/31		13.8					CLAY	EY SHALE,			
	PA			(0.45)					=		30 01)	Gray Vary Danca			
U	SS	_2	-2	60/21		14.0					7.0.7	Grey, Very Dense			
											Cont	inued on Sheet 2			
ļJ	THE ST	RATIF	ICATIO	N LINES A	EPRESENT	THE APP	OXIMAT	E BOU	NDARY LINE	S BETWE	EN SOIL TYPE	S: IN-SITU, THE TRANSITION MAY BE GRADUAL.			
_					RVATIO							BORING STARTED 4-27-79			
W.L.	7.			OR W.D		A.B	1 .	ΊL			RVICES	BORING COMPLETED 4-27-79			
W.L.	1	<u>~</u>		B.C.R	+	A.C.R	┥	.	of IOW	•		RIG CME 55 FOREMAN D.S.			
W.L.							Dav	enport	dar-Rapids	- iowa	Des Moines	APPROVED RKL JOB # 779504			

•									RORIN	ORING NO. R10W (Cont.)				
ا ر	OWNER ALUMINUM_COMPANY_OF_AMERICA									AR	CHITECT-E	OW (CONT.) NGINEER		
			COME	νανν η	F AMFR	I C A								
S	ITE				- Allen	IUA					PROJECT NAME			
RI	VER	JALE	, 10	IWA						BL	BLDG. EXPANSION 823			
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- lbs./ft.3	Unified Class. Symbol	Depth	Elevation		Description	1	
Sa	٦	Sa	8	ă	20%	š	ĕ۵	ان د	ă	Ö				
									30		Con (30.01)	t. from Sheet 1		
	[~ =					
			1.3	50/3		16.8						YEY SHALE y, Very Dense		
15	PA SS	_5	5	50/61		15.0			35	1				
	PA	1 1	1						日	1	İ			
16	SS	1 0	1.0	60/6	÷9000·	-15.6				1		•		
		1.3	1.4.5		777	-					(39.01)			
17	PA SS	_5	5	70SSE		18.7			40	!	WE.	ATHERED LIMESTO	NE	
	PΑ *.	ALIE	RATI	ED PEN	ETROMI	ETER					e 40	er Refusal 0.5 tom of Boring		
										—		S: IN-SITU, THE TRANSITION		
	WAT				RVATIO						RVICES		4-27-79	
W.L.	 	<u></u> '	W.S. v	OR W.D B.C.R		A.B.	-		of IOW	A, INC	Ä	BORING COMPLETE RIG CME 55	FOREMAN DS	

Cedar Rapids --- lowa City

Des Moines

Davenport

APPROVED RKL

JOB # 779504

	LOG OF BORING NO. R-1												
OWNER ARCHITECT-ENGINEER													
ALL	UMINUM COMPANY OF AMERICA												
4	ITE								-		DJECT NAM	i i	
RIV	EKU	ALE,	101	NA NA	·				,] Br	BLDG. EXPANSION 823		
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft: ²	Water Content-%	Dry Density- lbs./ft.3	Unified Class. Symbol	Depth	Elevation		Description	
<u>1</u>	PA SS PA SS			10	*2800 *3200 * 600 *1000			CL CL	5		(6.51)	SANDY SILTY CLAY, Dark Grey, Stiff	
	PA							-				FINE TO MEDIUM SAND	
3	SS 1.5 1.5 5 23.0							SP	= .			TRACE SILT, Grey, Loose	
<u> </u>	PA PA								10 —	,	(10.01)		
4	SS	1.5	1.5	5	800	33.1		ML		'	(12 01)	SAND, Grey, Soft	
5	PA SS	. 3	2	50/3	1	10.6				:	(12 <u>.0')</u> (13.0')	FINE TO MEDIUM SAND, Grey	
ι.	23		3	30/3		10.6					13.87	SHALE, Grey, Very Dense	
6	PA			50/0		10.0			15 📑	j	ļ		
6	*0	ALI	3 BRAT	_50/2	IETROM	ETER					(15.5')	Auger Refusal @ 15.5' Bottom of Boring	
							ROXIMAT	E 80U	NDARY LINES	BETWE	EN SOIL TYPE	S: IN-SITU, THE TRANSITION MAY BE GRADUAL.	
					RVATIO			DIL .	TESTING	SE	RVICES	BORING STARTED 4-20-79	
W.L.							3.		of IOWA	. INC	<u>.</u> -	BORING COMPLETED 4-20-79	

Cedar Rapids — Iowa City

Des Moines

B.C.R.

A.C.R.

Davenport

W.L.

W.L.

RIG CME 55

APPROVED

FOREMAN DAS

JOB # 779504

									00 0E	POE		G NO		
<u> </u>	WNE								OG OF		_	G NO. R5		
			OMDA	NV DE	AMEDI	CΛ				ľ	A11.C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·	
	TE	JM C	M COMPANY OF AMERICA								PRO	JECT NAM	E	
1		۹LE,	10%	<i>I</i> A		•				ł	BL	DG. EXPA	NSION 823	
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft.²	Water Content-%	Dry Density- lbs./ft.3	Unified Class. Symbol	Depth	Elevation			Description	
												(0.51)	Gravel	
	PA												(FILL) CLAYEY	SILT TRACE
1, 1	SS	1.5	5	q	*2500	34.1						(3.51)	GRAVEL, Brown	
	PA				2,700									
2	cc	, ,	1.5	7	*2000	24.7		ML	5 —				SILT TRACE CLA	
	PA	1.2	1.2		~2000	24.7		110	1 1				SAND AND ORGAN Gray Brown, So	
1		, ,	1.5	,	÷ 800	27 0		ML					diay brown, so	re to rearam
3	SS PA	11.5	1.2		^ 000	2/.9		ML				(0.51)		
				l					ho			(9.5') (10.5')	FINE TO COARSE	SAND Cray
4	_	1.5	1.5	41	*3000	25.3	 .		=			110.5	· · ·	SAND. GI AY
	PA							-						
5	SS	1.5	1.5	50/4"	* 9000-	14.3								
	PA			ļ				_	=				CLAYEY SHALE,	
6	SS	1.5	3	50/4"	*9000 1	13.1			5 =				Gray, Very Den Extremely Dens	
	PA] =				extremely bens	E
7	SS	1.5	. 8	100/6	* 9000+	13.8								
	PA													
8	ŞS	.5	.5	75/3''	*9000+	15.2			²⁰					
	PA	-]	1					=					
9	PA SS PA	5	3	7573	±2500	15.3		_						
10		1.0	.3	75/3''	÷9000+	10.3		-	=					
									5 —					
	PA						•		=					
	SS	. 5	_ 5	100/6	÷;9000+	16.3		<u> </u>				(27.5')		·
													Auger Refusal	@ 27.5'
	*.	۸, ,	RPAT	ED DE	RETROM	FTFR			L B0 —				Bottom of Bori	ng
	~(1	PIVAL		FEIRON	- ' - '						•		
		1					1		=		/			
								<u> </u>						
	THE S	TRATIF	ICATIO	N LINES	REPRESENT	THE APP	POXIMAT	r E BOU	NDARY LIN	CS BC	TWE	EN SOIL TYPE	S: IN-SITU, THE TRANSITION	MAY BE GRADUAL.
	WAT	ER I	EVE	L OBSE	RVATIO	NS	S	DIL	TESTIN	1G	SE	RVICES	BORING STARTED	
W.L.			W.S.	OR W.E		A.B	<u>.</u>		of IOW				BORING COMPLETE	
W.L.	<u> </u>		-	B.C.R	2.	A.C.R		Ce	dar Rapids	. — I	owa	City :	RIG	FOREMAN
W.L.	1						Day	venpor	t			Des Moines	APPROVED	JOB #

	LOG OF BORING NO. P5W												
C	WNE	R								AR	CHITECT-E	NGINEER	
ΑL	<u>тйти</u> ,	ז אח	:0MP/	ANY OF	AMERI	<u>ICA</u>					OJEÇT NAN	AC	·
	SITE VFRD/	AI.E.	, 10%	WA								NSION 822	
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- lbs/ft.3	Unified Class. Symbol	Depth	Elevation		Description	1
<u> </u>		<u>"</u>	 -					-				SILT-LITTLE C	LAY TRACE
	РА			·	•		ļ i		=	 		SAND AND ORGA	ANICS,
1	SS	1.5	1.0	11		47.3		ML	日日	I	(3.51)	Dark Brown, L	.oose
	PA_								5_			SILT SOME CLA	
	ss	1 9		6		31.6		CL]			SAND, Dark Gr Medium	
	PA	جملا		U.	<u> </u>	31.0		<u> </u>				meaium	
	ss	1.5	1.0	6	÷1200	25.8		CL					
	РА								<u> </u>		(9.51)		
4_	ss	.3		50/2"		7.4			10=			SANDY SHALE,	
	РА								上三	ı		Grey, Very De	ense
5	SS	1.5	1.5	48	÷9000+	13.2							
	PA								15 =				
		1.5	1.5		÷9000+	14 6					(17 21)		
	SS PA]		(17.0')		
	SS	8	8	60/3''	<u></u> 9000+	11.3		 	=			CLAYEY SHALE,	Grey
	PA.	 '	<u> </u>	 	 			 	20 =	_	•	Very Dense	•
8	SS.	-9	8	60/4"	<u>*9000+</u>	17.6							
_	PA	<u> </u>	<u> </u>		 			<u> </u>	_∃				
9	SS	.4		90/4"		10.9					(24.1')		
	, *(AL I	BRAT	ED PE	NETROM	ETER			25			Auger Refusal	
											1		
ļ				'					四日				
										ļ			
THE STRATIFICATION LINES REPRESENT THE APPROXIMAT						ROXIMAT	E BOU	NDARY LIN	ES BETWI	EN SOIL TYPE	S: IN-SITU, THE TRANSITION	N MAY BE GRADUAL.	
WATER LEVEL OBSERVATIONS						SC)II .	TESTIN	G SF	SERVICES BORING STARTED 4-20-79		4-20-79	
W.L. 19.0 W.S. OR W.D. 17.0 A.B.						/1 L	of IOW			BORING COMPLETE	D 4-20-79		
W.L. B.C.R. A.C.R.					٤.	Ce	dar Rapids			RIG CME 55	FOREMAN DAS		
W.L.	.						Dav	enport	•		Des Moines	APPROVED	JOB #779504

										BORIN	ORING NO. _{05W}		
۲	OWNER										CHITECT-EI		
l _{AL}	ALUMINUM COMAPNY OF AMERICA										·		
	ITE									- 1	PROJECT NAME		
RI	VERD		, 10	WA						IBL	BLDG. EXPANSION 821		
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- lbs./ft. ³	Unified Class. Symbol	Depth	Elevation		Description	
								ļ		,	(0.21)	ASPHALT	
	PA								=				
1	ss	1.5	1.3	10	÷1200	16.0		ML				SILT SOME SAND	
\vdash	PA_								_ =			Brown to Dark	brown, Loose
2	ss	1.5	0.8	8	÷2200	32.9		ML	5		(6,01)	·	·
<u> </u>	PA	ļ						<u> </u>				CLAVEV CLIT T	DACE CAND
3_	ss	1.5	1.0	4	÷1000	38.4		CL				CLAYEY SILT, T AND GRAVEL, Gre	y Brown to
<u></u>	PA_											Grey, Medium to	Stiff
4	ss	1.5	1.0	6	÷3000	32.9		CL	10-				
	PA										(12 01)		
اح	ss	1 5	1.3	30	 -9000+	26 2							
<u></u>	PA		1.	<u> </u>	70001	20,2			=				
6	ss	1.5	1.2	70	*9000+	15.7			15				
	PA				2000	,			=			_	
7	ss	, ,	1.0	88	.0000	15.5						CLAYEY SHALE, Dense to Extre	
 	DΔ DΔ	11.5	L.U.	_00	÷9000+	15.5		-				belise to Extre	mery beitse
8	ss_	-5	-5	100/6	149000-	13.5			20				
	PA	-											
9	SS	1.0	. 5	69/6"	*9000 1	15 0			▎ᅼ				
	РА				7	1.3.11			E				
<u> </u>	ΓA	-							25		1		
10		1.5	.2	80/3''		20.0		 					
 	PA_	-	 _	100 (1)	14000	15 0		-					
Ш		-3	1-3	100/4'	4000	15.0			=				
 , ,	PA	 _	1.	100/61	*0000	15 0		<u> </u>	L, I		(20 5.1		
12	22	بم	 • 4 -	1100/6	(30.5)								
	*CALIBRATED PENETROMETER											Auger Refusal	
	one reprinted the first of the						<u> </u>				l	Bottom of Bori	ng
t	THE STRATIFICATION LINES REPRESENT THE APPROX						MOXIMA1	r E BOU	NDARY LIN	ES BETWI	EN SOIL TYPE	S: IN-SITU, THE TRANSITION	MAY BE GRADUAL.
								DIL	TESTIN	G SE	RVICES	BORING STARTED	4-30-79
	W.L. 81 W.S. OR W.D. 0 A.B.							of IOWA, INC. BORING COMPLETED 4-30-			ED 4-30-79		
W.L	W.L. B.C.R. A.C.R.						_	Covenpor	dar Rapids	— lowa	City Des Moines	RIG CME 55	JOB #779504

								L	OG OF	BORII	ORING NO. 012W		
0	WNE	R								AR	CHITECT-E	NGINEER	
	ALUMINUM COMPANY OF AMERICA SITE										OJECT NAM	45	
- 5		ALE.	101	√A								ANSION 821	
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- lbs./ft. ³	Unified Class. Symbol	Depth	Elevation		Description	1
											(0.31)	CRUSHED STONE	
<u> </u>	РА											SILTY FINE SAN	<u>ID</u> ,
1_	SS PA	1.5	1.3	8	<u> 2000</u>	17.6		SM		ı	(4.51)	Dark Brown, Lo	ose
		, ,	, ,	8	÷3000	20 1		CL	5		/		
2	PA	1.5	1.1	-	7,3000	30.4	<u> </u>	CL				CLAYEY SILT, Dark Brown to	Greenish
3		1.5	٠.8	6	3000	29 1		CL				Brown, Stiff t	
	PA	•••			7000			-					
4	SS	1.5	1.3	3	1000	31.4		CL	10-				
_	РΑ]]				
15_	SS	1.5	1.3	4	600	32.5		CL				•	
6	PA SS	1 6	1 0	50/2"		14.6	-	SM], =		(15.31)		:
	PA	(1.0	70,2		17.0		-				FINE TO MEDIUM	SAND WITH
7	SS	1.5	0	80/1'				SM				SILT TRACE GRA	VEL AND CLAY,
	PA	1.2		00/1				31.] =		(19.5')		
8	SS	1.5	.8	80/4"	9000	15.5				•			
-	PA.	-							\exists				
9	SS	1.5		142	9000	14.0						CLAYEY SHALE,	
	РΔ								\exists			CLAYEY SHALE, Grey, Very Den	se
10		1.5	1.1	80/4"	9000	14.9			25 =	•			
11	PA SS	.1		50/1"	2000	ļ. 			=			•	
		• •	۲	70/1	7000								
12	PA SS	1.1	1 0	50/21	*9000	162			Bo		120 5:		
											(30.51)		
	*0	AL I	BRAT	ED PEI	ETROM	ETER						CONTINUED ON S	HEET 2
	THE STRATIFICATION LINES REPRESENT THE APPL					ROXIMAT	E BOU	NDARY LIN	ES BETW	EEN SOIL TYPE	S; IN-SITU, THE TRANSITION	MAY SE GRADUAL.	
	WATER LEVEL OBSERVATIONS						S	OIL '	TESTIN	IG SE	SERVICES BORING STARTED 4-30-79		
	W.L. 10 W.S. OR W.D. 7.0 A.B					3.	1			BORING COMPLETED 5-1-79			
W.L.	+			B.C.R	2.	A.C.F	_		dar Rapids	low	-	RIG CME 55	FOREMAN KW
W.L.	1						Dav	venpor	t		Des Moines	APPROVED	JOB # 779504

					<u>, </u>				OG OF I	RODIN	IG NO.		
<u> </u>	OWNER										CHITECT-E	12W	
			-0MP/	ANV OF	AMERI	ΓΔ				100	- PILLEO I - EI	IGINEER .	
ALU S	ITE	Jn c	,01117	1141 01	A ILI.	<u> </u>					DJECT NAM		
•		_	, 10%	√A ·	·	1			, _I	BL	DG. EXP	ANSION 821	
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft.²	Water Content-%	Dry Density- lbs./ft.3	Unified Class. Symbol	Depth	Elevation		Description	
		_							30 -			CONT. FROM SHEET 1	
	РА				!						}		
13	SS	9	9	60/4"	÷9000	19.3							
	PA												
14		7	R	50/311	*8500	15.0		 	35			CLAYEY SHALE, Grey, Very Dense	
13			1.5	ر بور	1.0000	٠,٠٠٩					ĺ	diey, very belise	
15	PA SS	. 5	 _ _	E1. /611	*7000	15.0		-					
		ے۔	1.2	54/0	* /000	15.4		\vdash	▎ ੜ				
	РА	 -	 '	 -			<u> </u>						
16	SS	.9	_ف_ ا	60/4"	÷8800	18.4		<u> </u>	40 —			•	
	РА		<u> </u>										
17.	ss	_ف_	8	60/4"	*8 000	14.0		<u> </u>]		
	_PA [·]		 -	<u> </u>	 		<u> </u>				(44.01)		
	ķα	ALI	BRAT	ED PE	NETROM	ERTER						Auger Refusal @ 44	4.0'
				1								Bottom of Boring	
			}	1			ĺ		-=				
		-	↓ '	,					\vdash				
			'	1									
			'						l				
				. 1									
			'	. !					\vdash		İ		
			'	,									
			'	}					▎╼╡				
			'			i							
			'	ļ ,							<u>[</u>	•	
	i		. !	!					▎∃				
	.			1			ĺ		日			•	
					REPRESENT								E GRADUAL.
W.L.	WAI			OR W.D	RVATIO	A.E)IL			RVICES	BORING STARTED BORING COMPLETED	
W.L.	 		17.3.	B.C.R		A.C.F		_	of IOW			RIG FORE	MAN

Cedar Rapids — Iowa City

Davenport

APPROVED

JOB #

W.L.

	,,							L	OG OF	BORIN	ORING NO. KL13W		
	WNE							ARCHITE				NGINEER	
AL	UMIN	NUM	COMP	ANY 0	F AMER	ICA		<u> </u>		-	DJECT NAM		
4	ITE VER	DALE	, 10	WA								NSION 818	·
Sample No.	Type Sample	Sampling Distance	Recovery	Blows/ft.	Unconfined Compressive Strength-lbs./ft. ²	Water Content-%	Dry Density- Ibs./ft. ³	Unified Class. Symbol	Depth	Elevation	OFFS	Description	
1	PA						!						
		1.5	1.0	12	*3600	38.8		CL			SILTY Brown,	CLAY, Medium to	
2	ss	1.5	1.5	10	*2800	34.5		CL	5 —		Stiff_ (7.0')		
3	SS S	2.5	1.5	7	*2000	26.9		CL			CLAYEY Light	SILT, Grey, Stiff	
4	SS PA	1.5	1.5	50		17.4			10— <u>—</u> —			WEATHERED & BRO	
5_	SS	1.5	1.0	64		7.5				•		Very Dense	,
6	PA SS	1.5	0.8	60/5'	'±9000	15.6		-	15		SHALE,	Grey, Very Den	se
		CAL	BRA	TED PE	NETRO	METER			20	72 827		of Boring	N MAY BE GRADUAL.
·	WATER LEVEL OBSERVATIONS									SETWEEN BOIL TYPES: IN-SITU. THE TRANSITION MAY BE GRADUAL. SEDVICES BORING STARTED 5-1-79		<u>-</u>	
W.L	111.0						JIL			RVICES	BORING COMPLETI	<u>5-1-79</u> ED 5-1-79	
W.L.	W.L. B.C.R. A.C.R.				_	Ce	of IOW dar Rapids			RIG	FOREMAN KW		
W.L.	1			•			Dav	enpor	•		Des Moines	APPROVED	JOB # 779504

_	i		
	FORM NO. 79-In sto	t and for sale by Ress-Martin Co., Tuisa, W-7622	
	STATE	RIVERDALE (SCOTT)	
	IOWA	AMMINUM CO.OF AMERICA	
	-1C/VEA		
	. 45 23	SE SE SW	
	TRN 4 BE	COMMENCED COMPLETED MAY 2-JUNE 2, 1956	
	┣╼┞╼ ┼╼┼╼┤	LAYNE - WESTERN - KEN. SMITH	
	┠═┾═┼═┤	126 OF 12 CASING	
	-		
	<u></u>	JULY 19, 1956 NORTHUP	
	EL 595	REMARKS Toru	
		· · · · · · · · · · · · · · · · · · ·	
	<u>TD 440</u>		
	/	<u> </u>	
-		<u> </u>	
	_ EJI-1		
	THE PARTY OF THE P	Legs Yeurs Leachige	
- 12	£Į\$	THE YELV OFFICER FRANCE LEASE, SUTY	
Pe.	mmum.	SR-00-00-tannelampy	
WA		Canadami G. ac. f.	
1, 14		A Selection of the control of the co	
01	<i>₹</i> 9	1.5. Cher. Sern. + Swit. Little .	
		10 mm 1000	
	11111111	U-can uro	
SILU		Listan, Life. Bot, is, as a supple through mys. Designer from the san feet 1-95	
		Date the spread of BIGGEL	
1	00	Date Compliant - Charles	
		Doe Can parts (, SU - YUBST	
		Detrominat,	
	1	Date Services	
		X Date describe	
I.	50	Detr denti:	
	1,000		
		÷ .	
		•	
7			
~ <	00		•
		*	
		X	:
	100	X X X	
2	50	Dot-ton-/n-Tof-	_
۷.	THE STATE OF		-
		Detremely'	
		Deli marine San U.Sa. f.	
		Descend :	
2	oo _X	Date tour les fair versay	
3(Date Carrif .	-
	1 1 2 2 2		
	= 2 ¹⁰ må - 2		•
	V man		
.7	Sa	X X CHANGE COMM > Doc- comple-	_
K	50 vn.	×	=
	×1		:
(X Delitarij.	
	~ H. S. S. S. S. S. S. S. S. S. S. S. S. S.	COTS and Array, They of France; But Caref.	1
×			<u>.</u>
4	00	× britished.	- !
	क्षा कर हो है। जा कर कर के किस कर है। जान की किस के किस के किस के किस की किस की किस की किस की किस की किस की किस	X (When dead (Sun); por Yang) .	1
_	E ST STATE OF	and the Bound School Box of the	
765	14 HI	Douctons : 13/1 Marry Bot. Cap. C	•
	 	STREET, STREET,	_
9	150	 	1
	шшт	A_TV_1	1 ,
	•	A-IV-1	
	•		

DETAILS WELL CONSTRUCTION WELL#2 ALUMINUM COMPANY OF AMERICA DAVENPORT, IOWA WESTERN Co. LAYNE AMES, IOWA CONSTRUCTION LoG NEAT CEMENT CLAY LIME -16" OPEN HOLE 406 STONE SHALE

A-IV-2

DETAILS WELL CONSTRUCTION WELL"3

ALUMINUM COMPANY OF AMERICA

DAVENPORT, IOWA

LAYNE	WESTERN	, Co.	AMES, I	OWA
	CONSTRUC	TION	Loc	
52'		GNO LEVEL NEAT CEMENT GROUT 22" DRILLED HOLE 16" BLACK STEEL CASING		<u>.</u>
8 ′		14" BLACH STEEL CASING	LIME. STONE E SHALE	
104		13½"OPEN HOLE		
		40 40	1	
	,	•		

DETAILS WELL CONSTRUCTION WELL # 4

OF AMERICA COMPANY

DAVENPORT, IOWA

LAYNE	WESTERN	Co
		O .

LAYNE	WESTERN CO.	AMES, IOWA
С	ONSTRUCTION	Log
	GND LEV	4 CLAY
55'	A2" DRILLED HOLE 16" BLACK STEEL CASIN	
	FORGED STEE DRIVE SHOE	_
		LIME-
104		STONE
-	15" OPEN HOLE	
•		
		401 AOI SHALE

DETAILS WELL CONSTRUCTION WELL#5

ALUMINUM COMPANY OF AMERICA

	DAVENE	PORT	r, Iov	VA
LAYNE WESTERN	Co.		4MES,	IONA
CONSTRUCTI	0 N		Log	
	GND LE	r e 1		
	NEAT CEM		Fill	
60'	24" DRILLED HOLE	$\overline{}$		
60	16" BLACK CSTEEL CAS	180		·
	5			
	FORGLO STE DRIVE SHOE	EL		
414			ime - stone	·
		ļ		
C16"	OPEN HOLE			
	.			·
		408	. :	
		4/4	Shale	

WELL LOG

Feet		Feet	Description
			·
0	- to	5	Clay, brown
5	– to -	7	Sand, med., brown
13	- to -	21	Clay, gray
. 21	- to	26	Clay & broken limestone, gray
26	– to	44	Limestone & shale, gray
44	- to	76	Limestone, gray, hard
76	- to -	82	Limestone & shale, gray
82	– to	90	Limestone, brown, hard
90	– to	100	Limestone, brown, with shale streaks
100	- to	122	Limestone, brown, hard
122	- to	138	Limestone, brown, very hard
138	– to	159	Limestone, gray, hard
159	- to	172	Limestone, brown, hard
172	– to	331	Limestone, gray, hard
331	– to	345	Limestone, gray, very hard
345	– to	350	Limestone, some chert, gray, very hard
· 350 375	– to	375	Limestone, gray, very hard
	– to	387	Limestone & chert, gray, some shale, hard
387 394	– to	394 400	Limestone, brown, hard
400	– to		Limestone, gray, very hard
400	– to	403 TD	Shale, green
	– to		
	– to		
	– to		
	_ to		
	- to		
	– to		
	– to		
	– to		
	<u> </u>		
	— to		
	- to		
	to		
	– to		
	– to		
	– to		·
	- to		
	– to		
			·
	— to		
	<u> </u>		
	to		
	to		

יווקפט		FORMUTION			
		PENNSYLVANIAN)) IOWA	GEOLOGICAL 5	SURVEY
	120 8 00	DEVONIAN	il :	In Cooperation w	ith
94		Wapsipinicon	U. S.	GEOLOGICAL	SURVEY
	n to silvan salva.	wapsipilizati	1)	lows City, lowa	
). (2)			Name		Store
4	100	SILURIAN	Aluminum Con	rn of Am 5	lowa
-	-10	Niagaran	}		10%2
		G	Town (County	i Los.
			Bettendorf S	Scott	
		- 1		Orillar	Sec.
			\Layne-Wes		; 300.
	1 S	/ /			. T AL D
			Drilling Dates		T. N,R.
100 -			1956		1
		4 %	Casing Record		1
		. +			<u>_</u> :
					لللا
1 2			!]		
					-
			[] ·		<u> </u>
- 4					-i
			S.W.L. G.P.	M. D.D	
	YY		<u> </u>		
			li .		1
5)					·
	100		Remarks		Elev
4	Her		1100000		1
200 -	3	•	 		
	and the second				. 70
436	1	·			4 112
		_	Logged By		I.G.S. No.
			Northup		<u> </u> W -7228
	. Zivicis				•
-			,		
4	$\mathcal{E}(\mathcal{I})$			•	
				•	
		• •			
				Explanation	
	1			•	
			·	of Colors	
300-				Drift	
		Kankakee	п	Sond &	Gravei
		Kankakee			
W.S.				Shale	
		·		· .	
				Sanaston	e
- 23	777	i		Limestor	
		i		Esta Limestor	16
		. 1		Colomite	
		·		C CHAIRING	
				Chort	
7		•		CLEZERLI CITA	
400-		Edgewood	•		•
120	25.50		_ •		
		ORDOVICIAN '		ان منک ، در انتخا	•
i F		Maquoketa		NIS No Samp	les
		-	•	•	
		·	• ,		•
\ \ 					
	<u></u> .]	i	•		
}					
				• • •	
					,
Enn 1				•	
500		<u> -</u> .			•

Appendix B

Waste Site Water Level Contour Maps and Hydrographs

- B-1 Ground-Water Contour Map Depicting Flow-Conditions at the Alcoa-Davenport Waste-Disposal Site on August 17, 1988.
- B-2 Ground-Water Contour Map Depicting Flow Conditions at the Alcoa-Davenport Waste-Disposal Site on November 14, 1988.
- B-3 Ground-Water Contour Map Depicting Flow Conditions at the Alcoa-Davenport Waste-Disposal Site on February 20, 1989.
- B-4 Ground-Water Contour Map Depicting Flow Conditons at the Alcoa-Davenport Waste-Disposal Site on May 17, 1989.
- B-5 Ground-Water Flow Directions at the Alcoa-Davenport Waste Site on August 15, 1989.
- B-6 Hydrograph of Water Levels from AS and AI Relative to Alcoa Pumping.
- B-7 Hydrograph Depicting Annual Water-Level Fluctuation in Selected Bedrock Monitor Wells at the Alcoa-Davenport Plant.
- B-8 Hydrograph Depicting Mean Fluid-Level Elevations for the Alcoa Waste-Disposal Site and Mississippi River during 1987.
- B-9 Hydrograph Depicting Water-Level Fluctuations in Selected Bedrock Monitoring Wells at the Alcoa-Davenport Plant During 1988.
- B-10 Hydrograph Comparing Mean Water-Level Elevations of Monitoring Wells at the Alcoa-Davenport Waste Site to the Mississippi River During 1988.

•562.00 FLUID LEVEL ELEVATION, IN FEET MSL

NM NOT MEASURED

GROUND WATER FLOW DIRECTION

GROUND WATER CONTOUR

B-1 Ground-Water Contour Map Depicting Flow-Conditions at the Alcoa-Davenport Waste-Disposal Site on August 17, 1988.

•GM-16 Monitor well

•s Collection well

575.96 Fluid - Level Elevation, in feet MSL.

NM Not Measured

<561.33 Fluid-Level below base of well

:-GM-16 Monitor well

Collection well

GROUND-WATER FLOW DIRECTION

-564- GROUND-WATER CONTOUR

#561.36 Fluid - Level Elevation , feet MSL

eDRY(<565.00) Water level is below base of well.

B-3 Ground-Water Contour Map Depicting Flow Conditions at the Alcoa-Davenport Waste Disposal Site on February 20, 1989.

GM-16 Monitor Well

o8 Collection Well

GM-17R Replacement Well, Installed April, 1989.

B-4 Ground-Water Contour Map Depicting Flow Conditions at the Alcoa-Davenport Waste-Disposal Site on May 17, 1989.

• GM-16 Monitor well

Collection well

oGMITR Replacement Well Installed April, 1989

-564 - Fluid Level Contour

Ground-Water Flow direction

B-5 Ground-Water Flow Directions in the Monitor Wells at the Alcoa-Davenport Waste Site on August 15, 1989.

B-6 HYDROGRAPH OF WATER LEVELS FROM AS AND AI RELATIVE TO ALCOA PUMPING.

EXPLANATION

- BEDROCK WELL AD
- **△** BEDROCK WELL BD
- **⊖** BEDROCK WELL CD
- --- INDICATES NO DATA TAKEN IN NOVEMBER
 - B-7 Hydrograph Depicting Annual Water-Level Fluctuation in Selected Bedrock Monitor Wells at the Alcoa-Davenport Plant.

B-8 Hydrograph Depicting Mean Fluid-Level Elevations for the Alcoa Waste Disposal Site and Mississippi River During 1987.

B-9 Hydrograph Depicting Water-Level Fluctuations in Selected Bedrock Monitoring Wells at the Alcoa-Davenport Plant During 1988.

B-10 Hydrograph Comparing Mean Water-Level Elevations of Monitoring Wells at the Alcoa-Davenport Waste Site to the Mississippi River.

Appendix C
Summary of Field Methodologies

FIELD METHODOLOGIES

A summary of the methodologies used to complete various components of the many field programs implemented at the Alcoa-Davenport site is provided herein. The methodologies discussed below address the drilling, well installation, sampling, measurement of water levels and oil thicknesses, slug tests, and pumping tests activities conducted at the Alcoa-Davenport site. Detailed discussions of the methodologies utilized are provided in the reports included on the list of references.

DRILLING AND WELL INSTALLATION

Waste-Site Monitor Wells and Borings

Waste-site wells and borings were completed using several types of truck mounted rotary rigs and hollow-stem augers. Soil samples were collected by driving 2-inch diameter, split-spoon samplers into the undisturbed stratum ahead of the lead auger. Several shallow waste-site wells were completed several feet into the uppermost bedrock surface. The bedrock portion of these wells was drilled using a 3-7/8-inch diameter tri-cone rotary bit and direct rotary drilling techniques. All soil and rock samples were visually identified and logged in the field by a G&M representative.

Upon reaching the desired depth, monitor wells consisting of 2-inch diameter PVC well casing and .010-inch slotted PVC well screen were installed through the hollow stem augers. The well screens were artificially sand packed and bentonite grout plugs were installed. Four-inch diameter locking steel, protective casings with caps were installed around the PVC casing, extending above the ground. Finally, a sloping concrete pad was installed at the base of the protective casing. No less than 48 hours after installation, the monitor wells were developed using various development techniques. All drilling and well installation

materials were properly decontaminated before, and between usage in accordance with standard G&M protocol.

Bedrock Wells and Borings

To minimize the introduction of drilling fluids to the borehole, air-rotary drilling was used to complete the bedrock monitor wells. The unconsolidated upper unit was cased off and sealed prior to advancing downhole during the drilling of each bedrock hole, to eliminate the downward migration of fluids from the upper unit to the bedrock aquifer.

Permanent 4-inch diameter steel well casings were seated into the bedrock by pressure-grouting a cement-bentonite grout mixture through the inside of the well casings and into the borehole annulus, hydraulically sealing the cased portion of the wells. After the grout had solidified, the wells were completed by drilling through the inside of the well casing into the underlying bedrock to the desired depth. Water production is obtained from the uncased portion of each well which remains open to the bedrock strata. Upon completion, a locking cap was installed over the steel section of casing exposed at the surface. No less than 24 hours after completion, the wells were developed using air rotary techniques to displace a continuous flow of water from each well insuring their integrity as monitor wells.

Drilling and well installation material was properly decontaminated prior to each usage in accordance with standard G&M protocol.

GROUND-WATER SAMPLING PROCEDURES

Waste-Site Ground-Water Sampling

Collecting samples representative of the water phase only was complicated by the presence of a floating oil phase in some of the wells at the waste site. To overcome this obstacle, specialized telescoping sampling techniques were developed and implemented. Rigid 1.5-inch tubing was lowered into the wells below the oilwater interface. A cork was inserted into the base of the tubing to prevent oil from contaminating the interior of the tubing. This cork was knocked free of the tubing using a 1.25-inch diameter Teflon bailer only after lowering the base of the tubing below the oil-water interface. The cork was attached to the tubing using new nylon cord to facilitate the removal of the cork from the well upon completion of sampling. The outer tubing was constructed of 5-foot lengths of threaded PVC pipe. The lowermost section, in contact with the oil and water, was constructed of Teflon, for quality control purposes.

After the cork was displaced from the base of the tubing, water samples were collected using the 1.25-inch diameter Teflon bailer. One full bailer was typically removed from each well during evacuation, prior to sampling the well. Subsequently, representative water-phase samples were collected using this bailer.

During Phase III Monitoring, water-sampling techniques were modified due to the discontinuation of sampling for PCB analyses at the waste-site wells, and due to the decreasing oil thickness in perimeter wells at the waste site. The telescoping sampling technique was discarded and conventional sampling techniques employed. Specifically, a 3-foot long by 1.67-inch diameter Teflon bailer was used to evacuate three well volumes from each well. Upon recovery of fluid levels in the wells, samples were

subsequently collected from the wells for VOC analyses only, using the same Teflon bailer.

Similar quality control procedures were utilized for all sampling methods implemented at the waste site. Prior to sampling each well, all equipment used in the well was initially decontaminated using a methanol rinse. Subsequent decontamination procedures included the application of a laboratory grade detergent wash followed by a distilled water rinse and a final deionized water rinse. Additional quality control procedures utilized included the collection and analysis of field blanks, duplicate samples and trip blanks. Chain of custody documents accompanied the samples at all times.

Bedrock Ground-Water Sampling

Prior to sampling, approximately three well volumes were evacuated from the shallow-most wells using a Teflon bailer. A minimum of one and one-half well volumes were evacuated from the deep and intermediate wells using a Grundfos stainless steel submersible pump. As the pump was lowered into each well, the discharge tubing was cleaned with a fresh cloth saturated with deionized water. After evacuation and pump removal, approximately one gallon was bailed from each well prior to collecting the ground-water samples. The samples were extracted using a bottom-filling Teflon bailer. Field measurements of pH, specific conductance and temperature were collected from each well at the time of sampling. For quality control purposes, field blanks and duplicate samples were collected, and a trip blank was provided by the laboratory.

Chain-of-custody documentation accompanied all of the samples at all times until delivery of the samples to the laboratory. All of the water samples were shipped via an overnight courier service to the laboratory, within a 12-hour period. All sampling methodology was conducted following G&M sampling protocol.

FLUID LEVEL AND OIL THICKNESS MEASUREMENTS

Water-Level Measurements

Fluid levels at the waste site were measured using a stainless steel tape measure calibrated in tenths of a foot. The tape was lowered into the well between one and two feet below the fluid For each well, a measurement was taken at the surveyed measuring point (MP) on the well casing. The tape was then withdrawn; and, the wet/dry boundary was noted on the tape. value was subtracted from the measuring point value to obtain the depth-to-water. Subtracting the depth-to-water value from the (MP) elevation yielded the elevation of the water table in each well. Water levels were measured in the bedrock monitor wells and plant process-water wells using an electronic water-level calibrated in fee (0.20-foot increments) and in meters. reaching the water surface in the well, the electronic sensing device was activated and the depth-to-water read directly from the electronic sensing device. Subtracting this depth-to-water value from the MP eleviation provided the elevation of the potentiometric surface of the bedrock aquifer in the vicinity of the well.

Oil-Thickness Measurements

Oil-thickness measurements are collected from the waste site monitor wells via a clear, bottom-filling acrylic interface bailer incremented in inches and in centimeters. The bailer is lowered into the column of fluid in each well without submerging the top of the bailer below the fluid surface. Upon retrieval, the fluid is visually observed to determine if any oil is present and if so, to measure its thickness. This bailer is dedicated for use solely in the shallow monitor wells and collection manholes to avoid cross-contamination of the bedrock wells.

AQUIFER TESTING

Aquifer testing was conducted in several locations on the plant site to determine aquifer properties. Both pumping tests and slug tests were conducted for this purpose.

Slug Tests

The slug tests were performed by lowering a Teflon bailer into the well and allowing the water level to equilibrate to the original level. The bailer was then quickly removed, with water levels recorded until the water-level had equilibrated. Slug test equipment was decontaminated between wells to prevent cross contamination.

Pumping Tests

Pumping tests of varying lengths were conducted in several locations at the Alcoa Plant. Each test consisted of pumping one well, in most cases a production well, and monitoring drawdown in neighboring wells. Recovery data was also collected for each test.

Pre-test water levels were monitored prior to conducting the pumping tests. Barometric pressure was also monitored prior to and during the test. Pumping rates were monitored and recorded. Discharge water was channeled to pre-determined locations to control runoff.

Appendix D
Supplemental Site Water Quality Analyses

APPENDIX D

- D-1. Summary of All PCB Analytical Data for Water Samples Collected From Shallow Monitor Wells at the Alcoa Waste Site.
- D-2. Summary of All PCB Analytical Data for Sediment Samples Collected From Shallow Monitor Wells at the Alcoa Waste Site.
- D-3. Summary of All PCB Analytical Data for Oil Samples Collected From Shallow Monitor Wells at the Alcoa Waste Site.
- D-4. Priority Pollutant Compounds Analyzed in Ground-Water Samples from the Alcoa, Davenport Bedrock Wells.
- D-5. Metals and Non-Metal Compounds Analyzed in the December 1985 Samples from the Alcoa-Davenport Plant Wells.
- D-6. Analytical Results of Unfiltered Ground-Water Samples Taken in December, 1985, from the Alcoa-Davenport Plant Wells.

TABLE D-1 SUMMARY OF ALL PCB ANALYTICAL DATA FOR WATER SAMPLES COLLECTED FROM SHALLOW MONITOR WELLS AT THE ALCOA WASTE SITE

	1	1	981								1	982					
WELL NO.	MAR.1	APR.1	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY.	JUN.	JUL.	AUG.	SEP.	ост.	NOV.	DEC
GM-1 GM-2 GM-3 GM-4 GM-5 GM-6 GM-7 GM-8 GM-8D GM-9 GM-10 GM-11 GM-12	.073 .004 .109 57 .010 .272 .082 1.180	.265 408 67 .106 .011 .004 .098 30 104	.008 .010 .004 .028 .400 IW .170 .020 .008 .180 .041 8.300	1.800 .122 .430	1.400 1.300 .300		IW IW .010	.110 .770 .008	.036 .029 .002 .230 .008 .083 .007 .001 .174 .011 .790	.049 .027 .002	.055 .054 .002	.081 1.000 .015	.028 .136 .005	.979 1.400 .002	.003 .016 .068 .724 .936 .003 .009 .003 .016 .105 .007	.244	.06
GM-13 GM-14 GM-15 GM-16 AS	.013	.205	.032 .002 .004		.010		.008	- .	.001 .006 .003		.005		.013		.010 .003 .003		.001
B-2 B-3 B-4	.003 .006		.003						.002						.002		

All Concentrations Reported In ppm ¹Samples Collected In March and April 1981 Are Composite Samples Which Contain Oil, Water, Sediment, Or Any Combination Of These Three Phases

^{--- =} Not Present Above Laboratory Detection Limits
Blank Space Indicates That A Sample Was Not Collected For PCB Analysis

X=Sediment Phase Not Present In Well

Wells GM-17 through GM-19, And GM-20 Through GM-23 Were Installed During February 1982 and September 1984, respectively, And Utilized For Fluid-Level And Oil-Thickness Monitoring.

TABLE D-1 (CONTINUED) SUMMARY OF ALL PCB ANALYTICAL DATA FOR WATER SAMPLES COLLECTED FROM SHALLOW MONITOR WELLS AT THE ALCOA WASTE SITE

		19	983											1	984		
WELL NO.	JAN.	FEB.	MAR.	APR.	MAY.	JUN:	JUL.	AUG.	SEP.	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	_
GM-1 GM-2 GM-3 GM-4 GM-5 GM-6 GM-7 GM-8 GM-8D GM-9 GM-10 GM-11 GM-12	.440 3.178 .660	2.804 1.230 	3.000 2.900 .510	.002 .001 .420 .010 .700 3.900 .037 .005 .620 .008 .004	2.020 4.470 .003	1.290 3.100 .190	17.500 2.520 .011	4.570 2.130 .002	3.770 1.670 .007	.062 .064 .032 1.812 .970 .009 .001 .012 .009 .096 .063			1.240 1.650 .005	1.261 2.189 .010	2.780 1.075 .107	.295 .005 .040 .009 .860 .819 .014 .017 .011 .005 .129 2.289 .732	
GM-13 GM-14 GM-15 GM-16 AS		.001		.037 .002 .002 .002		.002	.001	·	.006	.055				.001		.005 .001 .002	
B-1 B-2 B-3 B-4										.001							

Notes:

All Concentrations Reported In ppm

¹Samples Collected In March and April 1981 Are Composite Samples Which Contain Oil, Water, Sediment, Or Any Combination Of These Three Phases

^{--- =} Not Present Above Laboratory Detection Limits
Blank Space Indicates That A Sample Was Not Collected For PCB Analysis

X=Sediment Phase Not Present In Well

Wells GM-17 through GM-19, And GM-20 Through GM-23 Were Installed During February 1982 and September 1984, respectively, And Utilized For Fluid-Level And Oil-Thickness Monitoring.

TABLE D-1 (CONTINUED) SUMMARY OF ALL PCB ANALYTICAL DATA FOR WATER SAMPLES COLLECTED FROM SHALLOW MONITOR WELLS AT THE ALCOA WASTE SITE

	1986	19	087	19	88
WELL NO.	OCTOBER	APRIL	OCTOBER	MAY	OCTOBER
GM-1 GM-3 GM-4 GM-5 GM-6 GM-7 GM-8 GM-8D GM-10 GM-11 GM-12 GM-13 GM-14 GM-15 GM-16 AS B-1 B-2 B-3 B-4	.017 IW .036 .212	.011 .410 .210 .120	.041 18.000 4.200 (1.500) .190	.082 6.700 .850 .230	.340 IW .300

Notes:

All Concentrations Reported in ppm

Of These Three Phases

--- = Not Present Above Laboratory Detection Limits

Blank Space Indicates That A Sample Was Not Collected For PCB Analysis

IW = Insufficient Water Available For Sampling

Well GM-17 through GM-19, and GM-20 Through GM-23 Were Installed During February 1982 and September 1984, respectively, And Utilized For Fluid-Level and Oil-Thickness Monitoring.
(1.500) *= Results of Sample Certrifuged Prior to Analysis

¹Samples Collected in March and April 1981 Area Composite Samples Which Contain Oil, Water, Sediment, Or Any Combination

TABLE D-2 SUMMARY OF ALL PCB ANALYTICAL DATA FOR SEDIMENT SAMPLES COLLECTED FROM SHALLOW MONITOR WELLS AT THE ALCOA WASTE-DISPOSAL SITE

		19	81								19	82					
WELL NO.	MAR.1	APR.1	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY.	JUN.	JUL.	AUG.	SEP.	ост.	NOV.	DEC
GM-1	.073		12						130						18		_
GM-2	.004		7						Х						5		
GM-3	l		X		•				Х						2		
GM-4	.109	.265	62						9						99		
GM-5	1	408	810	х	59		Х	530	160	x	2070	1000	x	Х	Х	X	Х
GM-6	57	67	Х	Х	Х	х	Х	Х	Х	X	Х	Х	Х	x	Х	Х	Х
GM-7	ji -	.106	51	213	4560	58	93	160 -	51	26	25	1.10	65	19	104	64	188
GM-8	.010	.011	26					•	8						7		
GM-8D	li	.004	140		J				26						114		
GM-9	.272	.098	85		i				Х						118		
GM-10	.082	30	210						260						13		
GM-11	1.180	104	2000		ł				140						1346		
GM-12	.306	.108	270						120						6620		
GM-13	H																
GM-14		.205	230		110		260		79		97		90		86		569
GM-15			16						24						138		
GM-16 '	.013	.019	28		18		5		6		11		11		17		Х
AS	·																
					1												
B-1			х														
B-2	.003				j				X						Х		
B-3	.006		x		İ				9						20		
B-4									10								
	I				ł												

Notes:

All Concentrations Reported In ppm

1 Samples Collected In March and April 1981 Are Composite Samples Which Contain Oil, Water, Sediment, Or Any Combination
Of These Three Phases

^{--- =} Not Present Above Laboratory Detection Limits
Blank Space Indicates That A Sample Was Not Collected For PCB Analysis
X=Sediment Phase Not Present In Well

Wells GM-17 through GM-19, And GM-20 Through GM-23 Were Installed During February 1982 and September 1984, respectively, And Utilized For Fluid-Level And Oil-Thickness Monitoring.

TABLE D-2 (CONTINUED) SUMMARY OF ALL PCB ANALYTICAL DATA FOR SEDIMENT SAMPLES COLLECTED FROM SHALLOW MONITOR WELLS AT THE ALCOA WASTE-DISPOSAL SITE

· ,		19	83									İ		19	84	
WELL NO.	JAN.	FEB.	MAR.	APR.	MAY.	JUN.	JUL.	AUG.	SEP.	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.
GM-1 GM-2 GM-3 GM-4 GM-5 GM-6 GM-7 GM-8 GM-8 GM-8 GM-10 GM-11 GM-12 GM-13 GM-13 GM-14 GM-15 GM-16	X X X	x x x	X X X	X 5 X 69 X X X 9 X X 100 X 410 X 1300 40 X	x x x	x x x	x x x	X X X	x x x	X .05 X X X X X X X X X X X X X X X X X X X			1700 X 17	x x x	52 X X	X 1 X X 1130 X X X X 25 X 944 X X X
B-1 B-2 B-3 B-4				х					,	X .04 X						X X X

Notes:

All Concentrations Reported In ppm

1 Samples Collected In March and April 1981 Are Composite Samples Which Contain Oil, Water, Sediment, Or Any Combination Of These Three Phases

^{--- =} Not Present Above Laboratory Detection Limits
Blank Space Indicates That A Sample Was Not Collected For PCB Analysis

X=Sediment Phase Not Present In Well

Wells GM-17 through GM-19, And GM-20 Through GM-23 Were Installed During February 1982 and September 1984, respectively, And Utilized For Fluid-Level And Oil-Thickness Monitoring.

TABLE D-3 SUMMARY OF ALL PCB ANALYTICAL DATA FOR OIL SAMPLES COLLECTED FROM SHALLOW MONITOR WELLS AT THE ALCOA WASTE-DISPOSAL SITE

		1	981								19	82					
WELL NO.	MAR.1	APR.1	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY.	JUN.	JUL.	AUG.	SEP.	OCT.	NOV.	DEC
GM-1	.073		5						х	-					38		
GM-2	.004		х						x						X		
GM-3			Х						x						X		
GM-4	.109	.265	х						х						X		
GM-5		408	2400	6200	6700		6400	4100	5900	5600	4340	6900	6300	5640	5723	5650	5333
GM-6	57	67	10000	7200	7400	7500	6600	5700	6500	Х	4590	7800	7300	6340	6562	6250	6513
GM-7	1 .	.106	Х			Х	Х	X	. X	X	X	Х	X	Х	Х		
GM-8	.010	.011	Х						х		Х				Х		
GM-8D	!	.004	Х						х		Х				X		
GM-9	.272	.098	X						х						Х		
GM-10	.082	30	X						Х						Х		
GM-11	1.180	104	15000						X						7180		
GM-12	.306	.108	х						x						Х		
GM-13	i																
GM-14	1	.205	X		Х		х		X						Х		Х
GM-15	1		x x]				X						X		
GM-16	.013	.019	Х		Х		Х		x						Х		Χ.
AS																	
B-1			Х						.,								
B-2	.003		.,		i				X						X		
B-3	.006		X						X						Х		
B-4		•							Х								
	ll																

All Concentrations Reported In ppm ¹Samples Collected In March and April 1981 Are Composite Samples Which Contain Oil, Water, Sediment, Or Any Combination Of These Three Phases

^{--- =} Not Present Above Laboratory Detection Limits

Blank Space Indicates That A Sample Was Not Collected For PCB Analysis X=Oil Phase Not Present In Well

Wells GM-17 through GM-19, And GM-20 Through GM-23 Were Installed During February 1982 and September 1984, respectively, And Utilized For Fluid-Level And Oil-Thickness Monitoring.

TABLE D-3 (CONTINUED) SUMMARY OF ALL PCB ANALYTICAL DATA FOR OIL SAMPLES COLLECTED FROM SHALLOW MONITOR WELLS AT THE ALCOA WASTE-DISPOSAL SITE

	1	19	83											. 19	984		• '
WELL NO.	JAN.	FEB.	MAR.	APR.	MAY.	JUN.	JUL.	AUG.	SEP.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	
GM-1 GM-2 GM-3 GM-4 GM-5 GM-6 GM-7 GM-8 GM-8 GM-9 GM-10 GM-11 GM-12 GM-13 GM-14 GM-14 GM-15 GM-16	6090 7040	4420 5120 930 X	5200 5900 X	X X X 73 5700 X X X X X 5040 4700 X X	5780 6540 X	5050 6030 X	5350 6490 X	5800 6200 X	5500 6700 X	7 X X X 4410 5150 X X X X X X X X X X X X X X X X X X X			3950 4370 X	4175 10170 X	5129 5596 X	X X X 3493 4088 X X X X 4076 120 X X	
B-1 B-2 B-3 B-4				х	·					x x x						X X X	

Notes:

All Concentrations Reported In ppm

1 Samples Collected In March and April 1981 Are Composite Samples Which Contain Oil, Water, Sediment, Or Any Combination Of These Three Phases

^{--- =} Not Present Above Laboratory Detection Limits
Blank Space Indicates That A Sample Was Not Collected For PCB Analysis

X=Oil Phase Not Present In Well

Wells GM-17 through GM-19, And GM-20 Through GM-23 Were Installed During February 1982 and September 1984, respectively, And Utilized For Fluid-Level And Oil-Thickness Monitoring.

TABLE D-4

PRIORITY POLLUTANT COMPOUNDS ANALYZED IN GROUND-WATER SAMPLES FROM THE ALCOA, DAVENPORT BEDROCK WELLS

	Detection Limit (ug/1)	•	Detection Limit (ug/l)		Detection Limit (ug/1)
Volatile Organics		Base-Neutral Extractable Organics		Pesticides/PCBs	
Chloromethane	10	Exclude Oldanics		Aldrin	0.10
Vinyl Chloride	10	N-Nitrosodimethylamine	10	Alpha-BIC	0.10
Chloroethane	10	Bis (2-Chloroethyl) Ether	10	Beta-BIC	0.10
Bronomethane	10	1,3-Dichlorobenzene	10	Gamma-DiiC	0.10
Acrolein	100	1,4-Dichlorobenzene	10	Delta-BHC	0.10
Acrylonitrile	100	1,2-Dichlorobenzene	10	Chlordane	0.10
Hethylene Chloride	10	Bis (2-Chloroisopropyl) Ether	10	4,4'-DOT	0.10
Trichlorofluoromethane	10	Hexachloroethane	10	4,4'-DDE	0.50
1,1-Dichloroethylene	10	N-Nitrosodi-N-Propylamine	10	4,4'-DDD	0.10
1,1-Dichloroethane	10	Nitrobenzene	10	Dieldrin	0.10
trans-1,2-Dichloroethylene	10	Isophorone	10	Endosulfan I	0.10
Chloroform	10	Bis(2-Chloroethoxy) Methane	10	Endosulfan II	0.10
1,2-Dichloroethane	10	1,2,4-Trichlorobenzene	10	Endosulfan Sulfate	0.10
1,1-Trichlorethane	10	Naphthalene	10	Endrin	
Carbon Tetrachloride	10	Hexachlorobutadiene	10		0.10
Brandichloratethane	10	Hexachlorocyclopentadiene	10	Endrin Aldehyde	0.10
	10			lleptachlor	0.10
1,2-Dichloropropane	• •	2-Chloronaphthalene	10	Heptachlor Epoxide	0.10
trans-1,3-Dichloropropene	10	Dimethylphthalate	10	PCB-1242	1.0
Trichloroethylene	10	Acenaphthyene	10	PCB-1254	1.0
Benzene	10	2,6-Dinitrotoluene	10	PCB-1221	1.0
cis-1,3-Dichloropropene	10	Acenaphthene	-10	PCB-1232	1.0
1,1,2-Trichloroethane	10	2,4-Dinitrotoluene	10	PCB-1248	1.0
, Dibromochloromethane	10	Diethylphthalate	10	PCB-1260	1.0
Branoform	10	Fluorene	10	PCB-1016	1.0
1,1,2,2-Tetrachloroethylene	10	4-Chlorophenyl Phenyl Ether	10	Toxaphene	1.0
1,1,2,2-Tetrachloroethane	10	Diphenylamine (N-Nitroso)	10		
Toluene	10	1,2-Diphenylhydrazine (Azobenzene)	10	Acid Extractables	
Chlorobenzene	10	4-Bramophenyl Phenyl Ether	10		
Ethylbenzene	- 10	Hexachlorobenzene	10	Phenol	25
2-Chloroethyl Vinyl Ether	10	Phenanthrene	10	2-Chlorophenol	25
Dichlorodifluoromethane		Anthracene	10	2-Nitrophenol	25
Bis(Chloromethyl)Ether		Di-N-Butylphthalate ·	10	2,4-Dimethylphenol	25
• •		Fluoranthene	10	2,4-Dichlorophenol	25
		Benzidine	10	P-Chloro-M-Cresol	25
		Pyrene	10	2,4,6-Trichlorophenol	25
• .		Butylbenzylphthalate	10	2,4-Dinitrophenol	250
		Benzo(A) Anthracene	10	4-Nitrophenol	25
		3,3'-Dichlorobenzidine	10	4,6-Dinitro-O-Cresol	250
•		Chrysene	10	Pentachlorophenol	25
		Bis(2-Ethyhexyl)Phthalate	10		• •
		Di-N-Octylphthalate	10		
	•	Benzo(B)Fluoranthene	10		
		Benzo(K)Fluoranthene	10		
•		Benzo(A) Pyrene	10		
		Indeno(1,2,3-C,D)Pyrene	10		
		Dibenzo(A,H)Anthracene	10		
		Benzo(G,H,I)Perylene	10		

TABLE D-5.

METALS AND NON-METAL COMPOUNDS ANALYZED
IN THE DECEMBER 1985 SAMPLES FROM THE
ALCOA-DAVENPORT PLANT WELLS

202.1 204.1 206.3 210.1	Standard Methods 403
204.1 206.3 210.1	403
204.1 206.3 210.1	403
204.1 206.3 210.1	
206.3	
210.1	
213.1	
215.1	
	407b
	503a
220.1	
236.1	
	303a
242.1	
243.1	•
	303f
249.1	
353.3	
256.1	
270.3	
272.1	
273.1	
	209b
₹75 A	
	273.1 375.4 279.1 289.1

Methods for Chemical Analysis of Water and Wastes, 1979, EPA 600/4-79-020.

Standard Methods for the Examination of Water and Wastewater, 15th Edition, 1980.

TABLE D-6.
ANALYTICAL RESULTS OF UNFILTERED GROUND-WATER SAMPLES TAKEN IN DECEMBER, 1985,
FROM THE ALCOA-DAVENPORT PLANT WELLS

•	AI	AD	AS	BI (mg/l)	BD	CI	CD
Alkalinity, Total (CaCO ₃)	281	228	412	347	334	180	384
Aluminum	62.1	0.1	0.6	7.0	0.2	<0.1	0.1
Antimony	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arsenic	0.005	<0.002	<0.002	<0.002	<0.002	0.003	<0.002
Beryllium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cadmium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Calcium	110	60	152	126	104	152	95
Chloride	27	11	163	130	11	195	33
Chromium, Total	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Copper	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Iron	47.0	5.27	5.20	12.5	9.83	36.0	11.2
Lead	<0.05	<0.05	<0.05	<0.05	0.08	<0.05	<0.05
Magnesium	52.7	27.4	70.4	43.8	39.3	.58.9	41.4
Manganese	0.53	0.08	0.76	0.15	0.12	0.44	0.25
Mercury	<0.0002	0.0008	<0.0002	<0.0002	0.0007	<0.0002	0.0007
Nickel	0.13	<0.04	<0.04	0.05	<0.04	<0.04	<0.04
Nitrate	0.07	0.64	0.05	5.52	2.24	0.11	<0.05
Potassium	28.0	0.81	16.9	11.8	1.15	1.69	0.54
Selenium	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Silver	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	53.0	21.0	88.0	76.0	27.0	91	35.0
Solids, Dissolved	519	375	1720	885	487	1051	495
Sulfate	79	10	510	214	45	198	23
Thallium	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Zinc	0.072	0.040	0.015	0.021	0.119	0.087	0.014

Appendix E

Fate and Transport of Waste Site Contaminants

APPENDIX E

Physical and Chemical Properties Affecting Fate and Transport of Contaminants at the Waste Site

The fate and transport of the waste-site contaminants addressed within this report are affected by their physical and chemical properties. Table E-1 lists some of these properties for the following waste-site contaminants: chloroethane, 1,1-dichloroethane, 1,2-dichloroethane, PCBs (specifically Aroclor 1248), toluene, trichloroethane, and vinyl chloride. Although tetrachloroethane was detected in the bedrock aquifer only and not at the waste site, it is also included in this discussion.

The physical and chemical properties considered in this report water solubility, specific gravity, vapor pressure, Henry's Law Constant, organic carbon distribution coefficient (Kg), octanol-water partition coefficient (K_{ou}) , fish bioconcentration factor (BCF), and half-life. Water solubility is the maximum or saturated concentration of a chemical in pure water at a specific temperature. Specific gravity is the ratio of the density of a chemical to the density of water. Vapor pressure is a property of a chemical in its pure state and is an important indication of the volatility of a chemical. Henry's Law Constant is the air/water partition coefficient of a chemical which relates its concentration in the gas phase to its concentration in the water phase. be used to calculate the rate of evaporation of a chemical from water. K is a measure of the tendency for organic chemicals to be adsorbed by soil and sediment; Kom is a measure of the distribution of a chemical, at equilibrium, between octanol and The BCF is a measure of the tendency for a chemical in water to concentrate in fish tissue. The half-life (T 1/2) is the time required for the concentration of a chemical to be reduced by a factor of two.

The relative significance of each fate and transport mechanism for the contaminants is summarized in Table E-2. Fate and transport mechanisms will be discussed for the halogenated aliphatics, toluene, and PCBs in general. Chloroethane, 1,1-dichloroethane, 1,2-dichloroethene, tetrachloroethene, trichloroethene and vinyl chloride belong to a class of chemicals known as halogenated aliphatics, and as such, behave very similarly in the environment. Therefore, fate and transport of halogenated aliphatics will be presented in a general discussion.

Halogenated Aliphatic Compounds

The halogenated aliphatic compounds detected at the waste site are chloroethane, 1,1-dichloroethane, 1,1-dichloroethene, dichloroethene, trichloroethene, and vinyl chloride. In addition, the halogenated compound tetrachloroethene was detected in the bedrock aquifer. In general, these compound have relatively high aqueous solubilities and vapor pressures, low soil adsorption characteristics (K_c), extremely slow hydrolysis rates, relatively rapid oxidation rates (Table E-2). It is likely, therefore, that the halogenated aliphatics dissolved in ground water will degrade slowly due to their low hydrolysis rates but should be relatively mobile in ground water due to their high Upon release or removal from the ground-water solubilities. environment, the degradative pathway is volatilization and degradation in the troposphere through photoor chemical oxidation. The BCFs for these compounds are quite low and range from 1.17 to 31 (Table E-1). Thus, the potential for the halogenated aliphatics detected at the waste site to bioaccumulate in organisms at successive trophic levels is considered minimal.

Toluene

Toluene is primarily released by volatilization from soils and surface water to the air where it undergoes photooxidation to cresols and benzaldehyde. Volatilization rates from soil and water

vary; however, reported half-lives from water range between 5 hours and 16 days (Mackay and Leinonen, 1975; Wakeham et al., 1983).

Toluene not lost through volatilization is subject to microbial degradation in both soil and water. Under optimum conditions the half-life for aquatic biodegradation can be one day or less (Wakeham et al., 1983). Biodegradation is not a major removal mechanism under the anoxic conditions commonly encountered in ground water. However, with the addition of oxygen, nutrients and an adapted population of microorganisms, biodegradation rates can rise significantly (Wilson et al., 1983). Based on the octanol/water partition coefficient, moderate adsorption to soil is predicted. Bioaccumulation is not significant (USEPA, 1979).

PCBs

Based on the number and position of chlorines on the biphenyl ring, there are 209 possible isomers and congeners of PCBs. Aroclor was the trade name for commercial PCB mixtures produced in the United States. Different mixtures were designated by a four digit numbering system, e.g., Aroclor 1248. The first two digits indicate that there are 12 carbons in the biphenyl ring, and the last two digits indicate the approximate percentage of chlorine in the mixture. Each Aroclor mixture contains many PCB isomers and congeners. The position and number of chlorines on the biphenyl ring affect the environmental fate and transport.

Volatilization, adsorption, bioaccumulation, and anaerobic and aerobic dechlorination are the major factors affecting the environmental fate and transport of PCBs. Because of differences in physical and chemical properties among the various PCB congeners, PCB mixtures detected in the environment differ from the original commercial mixtures, and also differ with respect to environmental compartment or trophic level. Generally, PCBs in air samples contain a higher proportion of the less chlorinated congeners than those found in sediments or soils. Congeners found

in biota generally contain a higher percentage of the more chlorinated congeners (USEPA, 1979). Environmental cycling of PCBs occurs through volatilization. This cycling process has distributed PCBs throughout the environment and is likely the current major source of PCB release (Larsson, 1985; Swackhamer and Armstrong, 1986).

Based on vapor pressure alone, PCBs would not be considered volatile, but volatilization from water is significant because of low solubility and a relatively high Henry's Law Constant (Tofflemire et al., 1983). Volatilization can also be the major route of PCB release from lakes (Swackhamer and Armstrong, 1986). However, adsorption to suspended sediments will reduce volatilization rates significantly.

Low water solubilities and high octanol/water partition coefficients (K_{ow}) result in a high affinity of PCBs for soil and sediment. PCBs will strongly adsorb to soil or sediment with relatively high organic matter or clay contents (Haque et al., 1974; USEPA, 1979). Significant leaching would not be likely under most conditions. Sediments act as sinks for deposition of PCBs; however, resuspension and resolution can result in volatilization (Fisher et al., 1983; Swackhamer and Armstrong, 1986). The congeners with higher chlorine content generally will have the highest affinity for adsorption due to lower solubility and higher K_{ow} s. As described in Section 6.2.2, the solubility of PCBs has been evaluated for this waste site (ATC, 1988). The solubility ranges from 18 to 54 μ g/L; a value of 18 μ g/L has been used in calculations.

Bioconcentration factors for PCBs range between 10⁴ and 10⁶ liters per kilogram (L/kg) (USEPA, 1979). PCBs can be passed along the food chain or absorbed directly from the water column by aquatic species (Muir et al., 1988; Oliver and Niimi, 1988). PCB concentrations have been demonstrated to increase with trophic level and lipid content of the organism. The chlorine content of

PCBs also generally increases with trophic level (Oliver and Niimi, 1988).

Plants may accumulate PCBs from the air; however, available data indicate that uptake from the soil and translocation to stems and leaves is not significant (Tofflemire et al., 1983). Studies with corn and goldenrod have shown that less than one percent of PCBs entering the roots are translocated to stems and leaves over a growing season (Buckley, 1982).

PCB congeners with less than five chlorine atoms are susceptible to biodegradation while those with more than five are generally resistant (USEPA, 1979). Recent studies have shown that reductive dechlorination of the higher chlorinated congeners can occur in aquatic sediments. The dechlorinated products formed are generally less toxic and are subject to aerobic biodegradation (Brown et al., 1987; Quensen et al., 1988).

TABLE E-1
PHYSICAL AND CHEMICAL PROPERTIES OF CONTAMINANTS DETECTED
AT THE ALCOA WASTE SITE, RIVERDALE, IOWA.

Contaminant		Molecular Weight (g/mol)	Water Solubility (mg/L)	Specific Gravity	Vapor Pressure (mm Hg)	Henry's Law Constant (ATM ⁻ m ³ /mol)	K _{OC} (ml/g)	Log K _{ow}	Fish BCF (L/kg)	Water T 1/2 (days)
Benzene		78	1.750	0.88	95	5.6 E-3	83	2.12	5.2	<1-6
Bromodichlorom	ethane	164	NA	1.971	50	NA	NA	1.88	NA	NA -
Chloroethane		65	5,740	0.92	1000	1.11 E-02	33-143	1.54	5-7	0.1
Chloroform		119	8,200	1.483	151	2.87 E-03	31	1.9	3.75	0.3 - 30
1,1-Dichloroet	hane	99	5,500	1.178	182	4.31 E-03	30	1.79	12	1.0 - 5.0
1,1-Dichloroet	hene	97	2,250	1.218	600	3.4 E-02	65	1.84	5.6	1.0 - 6.0
1,2-Dichloroeti (trans)	hene	97	6,300	1.256	324	6.56 E-03	59	0.48	1.6	1.0 - 3.0
1,2-Dichloroeti	hene	97	3,500	1.28	208	7.58 E-03	49	0.70	1.6	1 - 6
PCBs 1248		300	0.06	1.41	4.9 E-04	2.8 E-04	530,000*	6.2	100,000*	2 - 13
PCBs 1260		376	0.0027	1.58	4.0 E-05	4.6 E-03	530,000*	6.8	100,000*	2 - 13
Tetrachloroeth	ene	166	150	1.62	18	2.59 E-02	364	2.86	31	1 - 30
Toluene		92	535	0.8669	28.1	6.37 E-03	300	2.73	10.7	0.17
Trichloroethen	e	131	1,100	1.46	60	9.10 E-03	126	2.38	10.6	1 - 90
Vinyl chloride		63	2,763	0.91	2660	1.07 E-02	57	1.38	1.17	1 - 5
* ATM-m ³ /mol BCF g/mole K _{OC} K _{OW}	Atmosphe Bioconce Grams pe Organic	entration Fa er mole. Carbon Part	subed per mole	cient.	L/kg mg/L mm Hg ml/g NA T 1/2	Milligram Millimete		у.	47 8	ERAGHTY MILLER, INC.

References: ATSDR, 1987; Howard, 1989; USEPA, 1986a; USEPA, 1979; Verschueren, 1983; Weast, 1981; Windholtz and Budavari, 1983

TABLE E-2
SIGNIFICANCE OF FATE AND TRANSPORT MECHANISMS
FOR CONTAMINANTS DETECTED AT THE
ALCOA WASTE SITE, RIVERDALE, IOWA

Contaminant	Photolysis	Oxidation	Hydrolysis	Volatilization	Sorption	Bioaccumulation	Biotransformation/ Biodegradation
Bromodichloromethane ^a	NS	Primary	NS	Primary	Wal	Low	Low
Chloromethane	NS	Low	Probable	Primary	NS	NS	Low
Chloroform	NS	Primary	NS	Primary	Low	Low	Low
1,1-Dichloroethane	NS	Primary	NS	Primary	NS	NS	Low
1,1-Dichloroethene	หร	Primary	NS	Primary	NS	NS	Low
1,2-Dichloroethene (trans)	หร	Primary	NS .	Primary	NS	NS	Low .
1,2-Dichloroethene (Cis)	หร	Primary	NS	Primary	NS	NS	Low ·
PCBs	Low	NS	NS	Primary	Primary	High	Low
Tetrachloroethene	NS	Primary	NS	Primary	NS	Moderate	Moderate
Toluene	. NS	Primary	NS	Primary	Moderate	Moderate	Moderate
Trichloroethene	NS	Primary	NS	Primary	NS	Low	Low
Vinyl chloride	NS	Primary	иs	Primary	NS	NS	Low

 $[\]mathbf{a} \quad \quad \text{Values for chloroform substituted due to scarcity of data.} \\ \text{NS} \quad \quad \text{Not significant.} \\$

References: USEPA, 1979; Howard, 1989; USEPA, 1985.

Appendix F

Residential and Municipal Water Quality

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

511

REGION VII 324 EAST ELEVENTH STREET KANSAS CITY, MISSOURI - 64106

APR 02 1934

Mr. Al Moore Director Environmental Health Scott County Health Department 428 Western Avenue Davenport, Iowa 52801

Dear Mr. Moore:

Jackie Hall of your Department has advised me that you were provided with analytical data on water samples collected and analyzed for the Aluminum Company of America (ALCOA) Davenport Works facility. Said samples were collected from several private wells in the vicinity of the ALCOA site, from the Mississippi River, and from the Davenport municipal water supply. Analyses of the samples were paid for by ALCOA as a service to owners and users of those water supplies to assure them that these supplies had not been contaminated by releases from the ALCOA site.

Ms. Hall has requested the opinion of the Environmental Protection Agency (EPA) regarding the significance of the levels of contaminants reported by the analytical data on these samples. ALCOA has provided me with a copy of the data and information provided to your department. In order to provide you with an opinion regarding the significance of this data I have consulted with the EPA Drinking Water Branch.

None of the Primary or Secondary Drinking Water Standards are exceeded in either the private or public water supplies sampled. Nor do the reported concentrations of contamination appear to pose a significant or unreasonable threat to public health if actually present in the water supplies.

The concentrations reported for inorganic metals appear to be within normal ranges. Two of the private wells contained methylene chloride. It is possible that these concentrations are the result of laboratory contamination of the glassware in which the samples were collected. The laboratory which analyzed these samples does use methylene chloride for cleaning glassware.

Chloroform was found in the Davenport municipal water supply. We suspect that the chloroform may be the result of the reaction of chlorine used to disinfect the municipal water supply with organic material present in the untreated water. This has been an occasional problem with other chlorinated water supplies, especially with those supplies that utilize surface sources of water.

Regardless of their presence in the water supplies methylene chloride, chloroform and metals are not primary constituents of the wastes previously disposed in ALCOA's lagoon. Sampling of the lagoon and the environment by both ALCOA and EPA have consistently shown the principal contaminant to be polychlorinated biphenyls (PCBs). We note that no PCBs were found in any of the samples collected by ALCOA. In addition EPA had previously sampled and analyzed water from the Davenport municipal supply and from the Mississippi River and did not find any PCBs.

In summary, based on our present information we find no evidence in any of this data that releases from the ALCOA site have contaminated either the private or the municipal water supplies. Please contact me at (816) 374-6864 if you have any other questions regarding the ALCOA Site.

Sincerely,

David V. Crawford Project Officer

Waste Management Branch

Air and Waste Management Division

cc: Joe Chandler, IDWAWM

The University of Iowa

Iowa City, Iowa 52242

Hygienic Laboratory

(319) 353-5990

184

June 5, 1984

Mr. Lawrence E. Barker Administrator Scott County Health Department Bicentennial Bldg., 5th Floor 428 Western Avenue Davenport, Iowa 52801

Dear Mr. Barker:

I am responding to your request to Mr. Gene Ronald regarding evaluation of the analytical data for wells in the vicinity of Alcoa's Riverdale plant. This data is reviewed for environmental significance only with no interpretation given as to any health effects that may be caused by any contaminants found in any of the wells.

The total organic carbon (TOC) and chemical oxygen demand (COD) values appear to be slightly high compared to what normally would be found in groundwater samples. I don't think this is any cause for alarm at this time. The inorganic priority pollutant detection limits which are listed in Exhibit II are not low enough to meet the Safe Drinking Water Act requirements for cadmium, chromium, lead, selenium and silver. It is therefore difficult to determine whether those constituents are present at the levels specified as maximum contamination levels (MCL) by the National Interim Primary Drinking Water Regulations.

The following summarizes the MCL values and the quoted detection limits for those contaminants:

	MCL	Detection limit stated
Cadmium	0.01 mg/L	0.02 mg/L
Chromium	0.05	0.1
Lead	0.05	0.2
Selenium	0.01	0.05
Silver	0.05	0.06

Considering the above stated qualifications there seems to be no abnormal environmental contamination of the water supplies at the time of sampling. I hope this information is of value to you. Please feel free to call if you have any questions.

Sincerely,

Roger C. Splinter, Ph.D.

Associate Director

RCS/1c

, en **j**eggende g

Beling Laboratories 1001 - 16th Street Moline, Illinois 61265 Phone 309 / 757-9800

Mr. M.K. Sonksen Aluminum Company of America P.O. Box 3567 Davenport, Iowa 52808

Laboratory Report

Date	December 6, 1983
Received	November 9 & 14, 1978
Lab No	4614-19,26

Residential Well Sampling

SAMPLE DESCRIPTION	COD	FLOURIDE	NITRATE NITROGEN	TOC
7 Mississippi River Water	25 mg/l	0.28 mg/l	1.26 mg/l	22.3 mg/1
6 Davenport City Water	13	1.06	1.69	14.8
2 Mr. Hargis	12	0.39	0.22	49.9
/ Mr. Lowell Harris	8.2	0.26	0.14	42.8
3 Mr. Max Horsey	8.7	0.32	1.42	29.6
4 Lisa Showalter	9.1	0.21	0.22	29.4
5 Patricia Dahms	3.5	0.25	0.919	1.9

Ceffrey a. Wasson

SCOTT COUNTY HEALTH DEPARTMENT

LAWRENCE E. BARKER, ADMINISTRATOR

PICENTENNIAL BLDG. 5TH FLOOR +28 WESTERN AVE. DAVENPORT, IOWA 52801 (319) 326-8618 THE COCN STATE OF SCO.

AL MOORE | | Environmental Health Director

CARMINE ROCCO
Disease Prevention and
Health Promotion Director

MARY HELFRICH Office Manager

September 21, 1984

TO: Whom It May Concern

FROM: Lawrence E. Barker

Administrator, Scott County Health Department

RE: Riverdale Private Water Well Sampling Project of November 1983 by the Aluminum Company of America

The intent of this report is to address the expressed concerns of Riverdale residents relating to the analysis of water samples taken from local wells by Alcoa. The company provided six pages of analytical data to the Scott County Health Department for our review. One hundred nineteen individual parameters were analyzed on five residential wells, the Davenport municipal water supply, and the Mississippi River water, by an independent laboratory. Alcoa consulted with and requested the assistance of this Department in presenting the information.

It was felt that the interests of the public could best be served by soliciting the expertise of the University of Iowa Hygienic Laboratory and the United States Environmental Protection Agency in evaluating and interpreting the data. In so doing, they were asked to determine the significance of the results. The following is a composite of their responses:

Robert C. Splinter, Ph.D Associate Director University of Iowa Hygienic Laboratory Iowa City, Iowa

"Considering the above-stated qualifications, there seems to be no abnormal environmental contamination of the water supplies at the time of sampling."

David V. Crawford
Project Officer
Waste Management Branch
Air and Waste Management Division
U.S. Environmental Protection Agency
Kansas City, Missouri

"None of the Primary or Secondary Drinking Water Standards are exceeded in either the private or public water supplies sampled nor do the reported concentrations of contamination appear to pose a significant or unreasonable threat to public health if actually present in the water supplies."

"The concentrations reported for nonorganic metals appear to be within normal ranges."

"Sampling of the lagoon and the environment by both Alcoa and EPA have consistently shown the principal contaminant to be polychlorinated biphenyls (PCB's)."

"We note that no PCB's were found in any of the samples collected by Alcoa. In addition, EPA had previously sampled and analyzed water from the Davenport municipal supply and from the Mississippi River and did not find any PCB's.

"In summary, based on our present information we find no evidence in any of this data that releases from the Alcoa site have contaminated either the private or the municipal water supplies."

Therefore, it is the opinion of the Scott County Health Department that the comments expressed by these individuals are sufficient to summarize and conclude this project.

If you have any questions concerning this correspondence, please contact Christopher A. Wightman, R.S., Public Health Sanitarian II, at 326-8618.

LEB/CAW:mc

ASUMINUM COMPANY OF AMERICA

FIO: BOX 555 DANEMPORT LONG 52505 (319) 959-2000

1984 March 15

David Crawford
Waste Management Branch
Environmental Protection Agency
325 E. 11th St.
Kansas City, MO 64106

RE: RESIDENTIAL WELL WATER ANALYSIS

Dear Mr. Crawford:

I have attached the well water analysis data we shared with the Scott County Board of Health on March 6, 1984. We were asking for the Board of Health's assistance in making the data presentable for review with the private well owner. Jackie Hall contacted you to seek more information on certain chemicals, which resulted in your phone call to me today.

A quick synopsis of the attached material:

Chemical compounds listed on attached Exhibit II are all the chemicals that were tested in each well with the corresponding detection limit of the analysis equipment.

The front page summary sheet lists all the chemicals found in any well. All the other compounds not listed were found to be below the detection limit. (N.D.)

The hand drawn map shows the relative location of the 5 residential wells in relation to the plant's western boundry (Bellingham Road).

As I mentioned in our phone conversation, the presence of Methylene chloride in two samples is believed to be a carryover from cleaning the sampling equipment.

If there are any questions concerning this material, please contact me at (319) 359-2236 or Marshall Sonksen at (319) 359-2754.

Yours truly

G. O. Pratt, Jr.

Manager

.Safety, Environmental and Energy

GOP:jch

noocc: M. K. Sonksen

W. L. Crawford/T. M. Wilkinson/R. L. Burns

M. E. Kommer, Pittsburgh

RESIPTATIAL WELL SAMPLING

Sample Identifier:	R.WELL	R.WELL	R. Well	R. Well	R. Well	City	River
·	A	B	C	D	E	Water	Water
	Nov. 83	Nov. 83	Nov. 83	Nov. 83	Nov. 83	Nov. 83	Nov. 83
	**						
INORGANICS (MG/L)					<u> </u>		
PRIORITY POLLUTANTS							
Copper, Total	N.D.	N.D.	N.D.	N.D.	N.D.	0.24	N.D.
· Zinc, Total	0.58	0.04	0.24	0.75	0.77	N.D.	N.D.
				ł			
Phenols, Total	0.02	0.01	0.01	0.01	N.D.	0.01	0.01
				<u> </u>	ŀ		
VOLATILE ORGANICS (AG/L)				·			
Chloroform	N.D.	N.D.	N.D.	N.D.	N.D.	52	N.D.
Methylene Chloride	12	N.D.	N.D.	N.D.	28	N.D.	N.D.
nceny rene on for fac		"			20		
DACE MEUTDAL / 4:041							
BASE NEUTRAL (//G/L) EXTRACTABLE ORGANICS]	ļ	<u></u>		j
, Third is a second sec							į
BIS (2-Ethylehexyl) Phthalate	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	15
					1		
OTHER (MG/L)							
TOC	42.8	49.9	29.6	29.4	1.9	14.8	22.3
Flouride	0.26	0.39	0.32	0.21	0.25	1.06	0.28
riouriae	0.20	0.33	0.32	0.21	0.25	1.00	0.20
Nitrate Nitrogen	0.14	0.22	1.42	0.22	0.919	1.69	1.26
COD	8.2	12	8.7	9.1	3.5	13	25

4-03-06.2

MARCH 15

Q

COMPUTATION SHEET

Beling Consultants PROFESSIONAL ENGINEERS

MOLINE, IL PEDRIA, IL ROCKFORD, IL JOLIET: II
CO ARORUA ON INROGRATION AI NOTONIANUB

184 Jew	DATE 12-7-83	PROJECT	gecox!	KESISEN	ا بار	11100,702, Nic	JOB NO.	33635	
CHK,D BA	DATE		SAN	19:126	زبح	ATIONS	SHEET NO.	OF	SHEETS

September 29, 1989

Mr. Frank Harrington Aluminum Company of America P. O. Box 3567 Davenport, Iowa 52808

Lab No.:

25961

Received:

September 18, 1989

Collected:

September 18, 1989

Collection point: Crissey House

VOLATILE FRACTION

	mg/L
Chloromethane	<0.01
Bromomethane	<0.01
Vinyl Chloride	<0.01
Chloroethane	<0.01
Methylene Chloride	<0.005
Trichlorofluoromethane	<0.005
1,1-Dichloroethene	<0.005
1,1-Dichloroethane	<0.005
1,2-Dichloroethene (total)	<0.005
Chloroform	<0.005
1,2-Dichloroethane	<0.005
1,1,1-Trichloroethane	<0.005
Carbon Tetrachloride	<0.005
Bromodichloromethane	<0.005
1,2-Dichloropropane	<0.005
cis-1,3-Dichloropropene	<0.005
Trichloroethene	· <0.005
Dibromochloromethane	<0.005
2-Chloroethyl vinyl ether	<0.005
1,1,2-Trichloroethane	<0.005
Benzene	<0.005
trans-1,3-Dichloropropene	<0.005
Bromoform	<0.005
Tetrachloroethene	<0.005
1,1,2,2-Tetrachloroethane	<0.005
Toluene	<0.005
Chlorobenzene	<0.005
Ethylbenzene	<0.005
-	

Aluminum Company of America Lab No.: 25961 Page 2

BASE NEUTRALS/ACID EXTRACTABLES

	mg/L
N-Nitrosodimethylamine	<0.01
Aniline	<0.01
Phenol	<0.01
bis(2-Chloroethyl)ether	<0.01
2-Chlorophenol	<0.01
1,3-Dichlorobenzene	<0.01
1,4-Dichlorobenzene	<0.01
Benzyl alcohol	<0.01
1,2-Dichlorobenzene	<0.01
2-Methylphenol	<0.01
bis(2-Chloroisopropyl)ether	<0.01
4-Methylphenol	<0.01
N-Nitroso-di-n-propylamine	<0.01
Hexachloroethane	<0.01
Nitrobenzene	<0.01
Isophorone	<0.01
2-Nitrophenol	<0.01
2,4-Dimethylphenol	<0.01
Benzoic acid	<0.05
<pre>bis(2-Chloroethoxy)methane</pre>	<0.01
2,4-Dichlorophenol	<0.01
1,2,4-Trichlorobenzene	<0.01
Naphthalene	<0.01
4-Chloroaniline	<0.01
Hexachlorobutadiene	<0.01
4-Chloro-3-methylphenol	<0.01
2-Methylnaphthalene	<0.01
Hexachlorocyclopentadiene	<0.01
2,4,6-Trichlorophenol	<0.01
2,4,5-Trichlorophenol	<0.05
2-Chloronaphthalene	<0.01
2-Nitroaniline	<0.05
Dimethylphthalate	<0.01
Acenaphthylene	<0.01
2,6-Dinitrotoluene	<0.05
3-Nitroaniline	<0.05
Acenaphthene	<0.01
2,4-Dinitrophenol	<0.05
4-Nitrophenol	<0.05
Dibenzofuran	<0.01
2,4-Dinitrotoluene	<0.05
Diethylphthalate	<0.01

Beling Consultants, Inc. Professional Engineering • Environmental Laboratory Beling Building, 1001-16th Street, Moline, IL 61265-3194 / 309-757-9800

Aluminum Company of America

Lab No.:

25961

Page 3

BASE NEUTRALS/ACID EXTRACTABLES (cont.)

	mg/L
4-Chlorophenyl-phenylether	<0.01
Fluorene	<0.01
4-Nitroaniline	<0.05
4,6-Dinitro-2-methylphenol	<0.05
N-Nitrosodiphenylamine	<0.01
Azobenzene	<0.01
4-Bromophenyl-phenylether	<0.01
Hexachlorobenzene	<0.01
Pentachlorophenol	<0.05
Phenanthrene	<0.01
Anthracene	<0.01
Di-n-butylphthalate	<0.01
Fluoranthene	<0.01
Pyrene	<0.01
Butylbenzylphthalate	<0.01
3,3'-Dichlorobenzidine	<0.02
Benzo(a)anthracene	<0.01
Chrysene	<0.01
Bis(2-Ethylhexyl)phthalate	<0.01
Di-n-octylphthalate	<0.01
Benzo(b)fluoranthene	<0.01
Benzo(k)fluoranthene	<0.01
Benzo(a)pyrene	<0.01
<pre>Indeno(1,2,3-cd)pyrene</pre>	<0.01
Dibenz(a,h)anthracene	<0.01
Benzo(g,h,i)perylene	<0.01

Jeffrey a. Wasson

Aluminum Company of America Lab No.: 25961

Page 4

PESTICIDE/PCB FRACTION

120110100,100 -121011011	
	mg/L
Alpha-BHC	<0.00005
Beta-BHC	<0.00005
Delta-BHC	<0.00005
Gamma-BHC (Lindane)	<0.00005
Heptachlor	<0.00005
Aldrin	<0.00005
Heptachlor Epoxide	<0.00005
Endosulfan I	<0.00005
Dieldrin	<0.00010
4,4'-DDE	<0.00010
Endrin	<0.00010
Endosulfan II	<0.00010
4,4'-DDD	<0.00010
Endosulfan Sulfate	<0.00010
4,4'-DDT	<0.00010
Methoxychlor	<0.0005
Endrin Ketone	<0.00010
Chlordane	<0.0005
Toxaphene	<0.001
Aroclor 1016	<0.0005
Aroclor 1221	<0.0005
Aroclor 1232	<0.0005
Aroclor 1242	<0.0005
Aroclor 1248	<0.0005
Aroctor 1254	<0.001
Aroclor 1260	<0.001

Aluminum Company of America Lab No.: 25961 Page 5

Antimony, mg/L	<0.2
Arsenic, mg/L	<0.002
Beryllium, mg/L	<0.005
Cadmium, mg/L	<0.005
Chromium, mg/L	<0.05
Copper, mg/L	<0.02
Lead, mg/L	<0.1
Mercury, mg/L	<0.0002
Nickel, mg/L	<0.04
Selenium, mg/L	<0.002
Silver, mg/L	<0.01
Thallium, mg/L	<0.1
Zinc, mg/L	0.994

Jeffrey a. Wasson.

Mr. Frank Harrington Aluminum Company of America P. O. Box 3567 Davenport, Iowa 52808

Lab No.:

25960

Received:

September 18, 1989

Collected:

September 18, 1989

Collection point: Kelley Cottage

VOLATILE FRACTION

	mg/L
Chloromethane	<0.01
Bromomethane	<0.01
Vinyl Chloride	<0.01
Chloroethane	<0.01
Methylene Chloride	<0.005
Trichlorofluoromethane	<0.005
1,1-Dichloroethene	<0.005
1,1-Dichloroethane	<0.005
1,2-Dichloroethene (total)	<0.005
Chloroform	<0.005
1,2-Dichloroethane	<0.005
1,1,1-Trichloroethane	<0.005
Carbon Tetrachloride	<0.005
Bromodichloromethane	<0.005
1,2-Dichloropropane	<0.005
cis-1,3-Dichloropropene	<0.005
Trichloroethene	<0.005
Dibromochloromethane	<0.005
2-Chloroethyl vinyl ether	<0.005
1,1,2-Trichloroethane	<0.005
Benzene	<0,005
trans-1,3-Dichloropropene	<0.005
Bromoform	<0.005
Tetrachloroethene	<0.005
1,1,2,2-Tetrachloroethane	<0.005
Toluene	<0.005
Chlorobenzene	<0.005
Ethylbenzene	<0.005

Jeffen a. Warm

Aluminum Company of America Lab No.: 25960

Page 2

BASE NEUTRALS/ACID EXTRACTABLES

	mg/L
N-Nitrosodimethylamine	<0.01
Aniline	<0.01
Phenol	<0.01
bis(2-Chloroethyl)ether	<0.01
2-Chlorophenol	<0.01
1,3-Dichlorobenzene	<0.01
1,4-Dichlorobenzene	<0.01
Benzyl alcohol	<0.01
1,2-Dichlorobenzene	<0.01
2-Methylphenol	<0.01
bis(2-Chloroisopropyl)ether	<0.01
4-Methylphenol	<0.01
N-Nitroso-di-n-propylamine	<0.01
Hexachloroethane	<0.01
Nitrobenzene	<0.01
Isophorone	<0.01
2-Nitrophenol	<0.01
2,4-Dimethylphenol	<0.01
Benzoic acid	<0.05
<pre>bis(2-Chloroethoxy)methane</pre>	<0.01
2,4-Dichlorophenol	<0.01
1,2,4-Trichlorobenzene	<0.01
Naphthalene	<0.01
4-Chloroaniline	<0.01
Hexachlorobutadiene	<0.01
4-Chloro-3-methylphenol	<0.01
2-Methylnaphthalene	<0.01
Hexachlorocyclopentadiene	<0.01
2,4,6-Trichlorophenol	<0.01
2,4,5-Trichlorophenol	<0.05
2-Chloronaphthalene	<0.01
2-Nitroaniline	<0.05
Dimethylphthalate	<0.01
Acenaphthylene	<0.01
2,6-Dinitrotoluene	<0.05
3-Nitroaniline	<0.05
Acenaphthene	<0.01
2,4-Dinitrophenol	<0.05
4-Nitrophenol	<0.05
Dibenzofuran	<0.01
2,4-Dinitrotoluene	<0.05
Diethylphthalate	<0.01
• •	٨

Aluminum Company of America

Lab No.:

25960

Page 3

BASE NEUTRALS/ACID EXTRACTABLES (cont.)

	mg/L
4-Chlorophenyl-phenylether	<0.01
Fluorene	<0.01
4-Nitroaniline	<0.05
4,6-Dinitro-2-methylphenol	<0.05
N-Nitrosodiphenylamine	<0.01
Azobenzene	<0.01
4-Bromophenyl-phenylether	<0.01
Hexachlorobenzene	<0.01
Pentachlorophenol	<0.05
Phenanthrene	<0.01
Anthracene	<0.01
Di-n-butylphthalate	<0.01
Fluoranthene	<0.01
Pyrene	<0.01
Butylbenzylphthalate	<0.01
3,3'-Dichlorobenzidine	<0.02
Benzo(a)anthracene	<0.01
Chrysene	<0.01
Bis(2-Ethylhexyl)phthalate	<0.01
Di-n-octylphthalate	<0.01
Benzo(b)fluoranthene	<0.01
Benzo(k)fluoranthene	<0.01
Benzo(a)pyrene	<0.01
Indeno(1,2,3-cd)pyrene	<0.01
Dibenz(a,h)anthracene	<0.01
Benzo(g,h,i)perylene	<0.01

Jeffrey a. Wasson

Aluminum Company of America Lab No.: 25960

Page 4

PESTICIDE/PCB FRACTION

	mg/L
Alpha-BHC	<0.00005
Beta-BHC	<0.00005
Delta-BHC	<0.00005
Gamma-BHC (Lindane)	<0.00005
Heptachlor	<0.00005
Aldrin	<0.00005
Heptachlor Epoxide	<0.00005
Endosulfan I	<0.00005
Dieldrin	<0.00010
4,4'-DDE	<0.00010
Endrin	<0.00010
Endosulfan II	<0.00010
4,4'-DDD	<0.00010
Endosulfan Sulfate	<0.00010
4,4'-DDT	<0.00010
Methoxychlor	<0.0005
Endrin Ketone	<0.00010
Chlordane	<0.0005
Toxaphene	<0.001
Aroclor 1016	<0.0005
Aroclor 1221	<0.0005
Aroclor 1232	<0.0005
Aroclor 1242	<0.0005
Aroclor 1248	<0.0005
Aroclor 1254	<0.001
Aroclor 1260	<0.001

Jeffrey a Wasson

Aluminum Company of America

Lab No.:

25960

Page 5

Antimony, mg/L	<0.2
Arsenic, mg/L	<0.002
Beryllium, mg/L	<0.005
Cadmium, mg/L	0.008
Chromium, mg/L	<0.05
Copper, mg/L	0.06
Lead, mg/L	<0.1
Mercury, mg/L	<0.0002
Nickel, mg/L	<0.04
Selenium, mg/L	<0.002
Silver, mg/L	0.02
Thallium, mg/L	<0.1
Zinc, mg/L	0.303

Jeffrey a. Wasson

IOWA-AMERICAN WATER COMPANY

AN AMERICAN WATER WORKS SYSTEM COMPANY

October 9, 1989 File No. 230-383

Mr. Craig S. Stevens Staff Scientist, Hydrogeologist Geraghty & Miller, Inc. 6209 Riverside Drive, Suite One South Dublin, OH 43017

Dear Mr. Stevens:

I have enclosed analytical results for the selected priority pollutants from raw water samples collected from the Mississippi River. Tetrachloroethylene and trichloroethylene were the only two compounds that were detected during the period of 1982-1988.

Hopefully, these anlaytical results will provide helpful water quality data for Alcoa's hydrogeological report. We would appreciate being copied on any report that our data is utilized.

Should you have any questions, please feel free to call. Let us know if we can be of further assistance.

Sincerely,

Joel R. Mohr

Assistant Production Superintendent-Water Quality

Enclosure

IOWA-AMERICAN WATER COMPANY, DUAD CITIES DISTRICT

MISSISSIPPI RIVER WATER QUALITY - SELECTED PRIDRITY POLLUTANTS

SAMPLE LOCATION	COMPOUND	HCL OR MCLG	TINU	1989	1988	1987	1986	1985	1984	1983	1982	1981	198
RAW WATER - MISSISSIPPI RIVER	CHLOROETHANE		M6/L		(0.0005 (0.0005	(0.001 (0.001	<0.001 <0.001	(0.001 (0.001	(0.001 (0.001				
	1,1-DICHLOROETHANE		··M6/L		-{0:0005- ⟨0.0005	{0.001 (0.001	-(0:001 (0:001	{0:001- <0.001	-(0.001- (0.001	(0:001- <0.001		•	
	1,1-DICHLOROETHENE	0.007	MG/L	····	<0.0005 (0.0005	<0.001 ⟨ 0 :001	(0.001 	<0.001 <0.001	<0.001 <0:001	<0.001 (0:001	<0.01 (0:001		
	1,2-DICHLOROETHANE	0.005	MG/L		(0.0005 (0.0005	(0.001 (0.001	(0.001 (0.001	(0.001 (0.001	(0.001	(0.001 (0.001	<0.01 <0.001		
	TRANS-1,2-DICHLOROETHYLENE	0.07≇	MG/L		<0.0005 <0.0005	(0.001 (0.001	(0.001 (0.001	<0.001 <0.001	(0.001 (0.001	<0.001 <0.001	<0.01 <0.001		
	- TETRACHLORDETHENE (TETRACHLORDETHYLENE)		M6/L -	٠	(0.0005 (0.0005	<0.001 <0.001	<0.001 <0.001	4.267-	- (0.001 (0.001	(0.001— (0.101	-<0.01 <0.001		
	TOLUENE	2.0₹	M6/L		<0.0005 <0.0005	(0.001 {0.001-		(0.001 (0.0 01	<0.001 -<0.001	<0.001 <0.00 1	<0.001···		
	TRICHLORDETHYLENE	0.005	MG/L		<0.0005 <0.0005	(0.001		(0.001 (0.001	(0.001 (0.001	0.0046 100.00	(0.01 (0.001		
1	VINYL CHLORIDE	0.002	MG/L		(0.0005 (0.0005	(0.001 (0.001	(0.001 (0.001	(0.001 (0.001	(0.001 (0.001				

10WA-AMERICAI

R COMPANY. QUAD CITIES DISTRICT

STARTED ANALYZINS FOR PCB 1 ... UARY 1984

DRINKING WATER SURVEILLANCE PROGRAM - POLYCHLORINATED BIPHENYLS (PCB)

NOTE THE FOLLOWING PCB COMPOUNDS ARE MONITORED: PCB 1016. PCB 1221. PCB 1232, PCB 1242, PCB 1248. PCB 1254

- 1		00000000							· - - -												
SAMPLE LOCATION	PARAMETER	PROPOSED MCL OR MCL	6 UNIT	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUB	SEP	130	NOV	DEC	AVERAGE			NO. OF TEST		
	 					,												-			
RAN WATER -	984 PCB 985	PMCL 0.000	5 MG/L				(0.001	- (0.001 -					(0.001 (0.001			0	0	0		2	
1/2 10 10	786 787						(0.001 (0.001	(0.001					(0.001 (0.001			0	ŏ	Ŏ		2 2	
17 10 10 10 10 10 10 10 10 10 10 10 10 10	788 789						(0.001	•					(0.001			0	0	0		2	
11.																					
FILTER INFLUENT	784 PCB	PMCL 0.000	5 MG/L	(0.001					(0.001		(0.001				(0.001	0	0	0		4	
15	785 786 787 ————	MCLG 0		(0.001 (0.001 (0.001					(0.001 (0.001 (0.001		(0.001 (0.001				<0.001 <0.001 <0.001	0	0	0		4	
ie i	788 789			(0.001					(0.001		(0.001				(0.001	0	0	. 0		, 4 1	
FILTER EFFLUENT																					 -
FILTER EFFLUENT	784 PCB	PMEL 0.000	5 MG/L	(0.001					(0.001		(0.001				<0.001	٨	0	Λ		4	
<u> </u>	185 186	MCL6 0		(0.001 (0.001					- (0.001 - (0.001 - (0.001		100.0)				₹0.001 ₹0.001	ŏ	<u>0</u>	Ŏ			
	787 788 78 9			(0.001 (0.001 (0.001		. — 			(0.001 (0.001		100.0)		· · · · · · · · · · · · · · · · · · ·	-· 	(0.001 (0.001	0	0	0		<u> </u>	
<u>-</u> 로만				(0.00)												v	v	v			
PLANT EFFLUENT	784 PCB	DWCI A AAA	E MCO					— —	··-		· -										
5	785 786	PMCL 0.000 MCL6 0	J No/L				(0.001	(0.001					(0.001 (0.001 (0.001			0	0	0		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	7 87						(0.001 (0.001						(0.001 (0.001			Ŏ	ő	ŏ		2 2	
37	789 						<0.001								 -			0		1	
± ± Distribution sys	IEM																				
.3 \$ 1 '	784 PCB 785 786	PMCL 0.000	5 MS/L				· · · ·					- :								0	
10 10 10 10	787 788							(0.001								0	0	0		1	
<u>i</u>	789													<u>_</u>						0	
<u>-</u>				, 																63 TOTAL	
27 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																					
45												 _									
.5 7	. ,																				
		· · · · · · · · · · · · · · · · · · ·			· · · · · · ·		•		–		·									·	
			···-			4.4.		-							·					·	
(C) (2) (3)																					
3 ¹																					
<u></u>										· -											

IOWA-AMERICAN WATER COMPANY

"A Tradition of Quality Service to the American Heartland"

Iowa-American Water Company was formed in 1987, as the result of a merger between Davenport Water Company and its sister company, Clinton Water Works Company. While the "Iowa-American" name is relatively new, the two utilities which created it have been dedicated to quality water service for over a century. The new name symbolizes the service provided in the State of Iowa as well as participation in the American Water Works Company, Inc., Iowa-American's parent corporation.

The American Water System, which is the largest group of investor-owned water utilities in the country, has been in the business of providing water service to the greater-Davenport area since 1927, when it purchased Davenport Water Company.

Iowa-American's Quad Cities District provides water for homes, manufacturing and fire protection to over 130,000 residents in Davenport, Bettendorf, Riverdale and Panorama Park. Every day, on the average, 18 million gallons of water is supplied to customers, 50 percent of which is pumped to residential customers for drinking, cooking and cleaning. The other half is used for industrial and commercial purposes.

As a public utility regulated under the laws of the State of Iowa, Iowa-American's rates are set and approved by the Iowa Utilities Board.

The Mississippi River is the district's sole water supply. Purification and initial distribution of water into the system occurs at the treatment plant located one mile upstream from Lock and Dam #15 on the bank of-the river. Treatment includes flocculation, sedimentation, chlorination and filtration processes before the final product is distributed to consumers throughout the district's over 500-mile pipeline distribution system.

Iowa-American's in-house testing laboratory conducts about 140 water quality analyses daily. Iowa-American, as with all other public water suppliers, must meet stringent water quality guidelines established by federal, state and local agencies. As a subsidiary of the American Water System, the company is fortunate to have access to a state-of-the-art laboratory in Belleville, Illinois, where extensive research and complex water analyses are conducted.

Water quality is a top priority for Iowa-American Water Company. The company is proud of its dedicated and professional personnel. In the future, the company will continue to build on its tradition of quality service to the American heartland providing customers with the highest quality water product available, at the lowest reasonable cost.

Appendix G
Slug Test Data

TABLE OF PARAMETERS USED TO CALCULATE HYDRAULIC CONDUCTIVITY BASED ON SLUG TEST DATA

	rc	rw	LA	LB	H
	(ft)	(ft)	(ft)	(ft)	(ft)
WELL					
GM-4	.260	.458	10	5.6	5.6
GM-6	.260	.458	10	4.6	4.6
AS	.288	.458	10	3.7	3.7
GM-12	.288	.458	10	3.5	3.5
GM-14	.195	.333	5	2.5	2.5
GM-16	.120	.166	17	11	11
	•	i	1	1	

Notes:

LB: Length of Screen and/or Open Borehole Below Water Table which equals ${\tt H.}$ LB Value Used for all Calculations.

 $\mathtt{L}^{\mathtt{A}} \colon$ Total Length of Screen and/or Open Borehole.

slug2.tbl

ALCOA SLUG TEST-WELL 6

ALCOA SLUG TEST-WELL 12

ALCOA.SLUG TEST-WELL 14

ALCOA SLUG TEST-WELL AS

ALCOA (DAVENPORT, IOWA) SLUG TEST DATA WELL GM-4

Elapsed Time (Minutes)	Depth to Water (Feet)	Residual Head (Feet)
0.00	16.09	.00
.25	16.30	.21
.50	16.27	.18
	16.26	.17
.75	16.25	.16
1.00		
1.25	16.24	.15
1.50	16.23	.14
2.00	16.22	.13
2.50	16.215	.125
3.00	16.21	.12
4.00	16.205	.115
6.00	16.20	.11
10.00	16.19	.10
20.00	16.17	.08
30.00	16.17	.08
50.00	16.165	.075
	16.16	.07
70.00		
130.00	16.15	.06
345.00	16.11	.02
408.00	16.105	.015

ALCOA (DAVENPORT, IOWA) SLUG TEST DATA WELL GM-6

Elapsed Time (Minutes)	Depth to Water (Feet)	Residual Head (Feet)
0.00	17.92	.00
0.50	18.20	.28
0.75	18.15	.23
1.00	18.12	.20
1.25	18.10	.18
1.50	18.08	.16
1.75	18.05	.13
2.00	18.045	.125
2.50	18.03	.11
3.00	18.02	.10
3.50	18.005	.085
4.00	18.00	.08
5.00	17.99	.07
6.00	17.98	.06
8.00	17.97	.05
10.00	17.96	.04
20.00	17.945	.025
-30.00	17.93	.01
95.00	17.92	.00

ALCOA (DAVEMPORT, IOWA) SLUG TEST DATA WELL GM-12

Elapsed Time (Minutes)	Depth to Water (Feet)	Residual Head (Feet)
0.00	14.50	.00
0.50	14.80	.30
0.833	14.75	.25
1.00	14.73	.23
1.25	14.71	.21
1.50	14.70	.20
1.75	14.685	.185
2.00	14.670	.170
2.50	14.655	.155
3.00	14.64	.140
3.50	14.63	.130
4.00	14.62	.120
4.50	14.61	.110
5.00	14.60	.100
6.00	14.59	.090
7.00	14.58	.080
8.00	14.57	.070
_10.00	14.56	.060
15.00	14.545	.045
20.00	14.530	.030
30.00	14.525	.025

ALCOA (DAVENPORT, IOWA) SLUG TEST DATA WELL GM-14

Elapsed Time (Minutes)	Depth to Water (Feet)	Residual Head (Feet)
0.00	12.05	.00
0.833	12.60	.55
1.083	12.41	.36
1.33	12.30	.25
1.58	12.23	.18
1.83	12.18	.13
2.08	12.15	.10
2.33	12.12	.07
2.58	12.105	.055
2.83	12.08	.03
3.08	12.07	.02
3.33	12.065	.015
3.58	12.06	.01
4.58	12.055	.005
6.83	12.05	.00

ALCOA (DAVENPORT, IOWA) SLUG TEST DATA WELL GM-16

Elapsed Time (Minutes)	Depth to Water (Feet)	Residual Head (Feet)
0.00	11.45	.00
0.50	12.73	1.28
0.75	12.61	1.16
1.00	12.56	1.11
1.25	12.49	1.04
1.50	12.44	.99
1.75	12.40	.95
2.00	12.35	.90
2.25	12.30	.85
2.50	12.26	.81
2.75	12.22	.77
3.00	12.19	.74
3.25	12.165	.715
3.50	12.12	.67
4.00	12.06	.61
4.50	12.005	.555
5.00	11.955	.505
- 5.50	11.91	.46
6.00	11.87	.42
6.50	11.825	.375
7.50	11.76	.31
8.50	11.71	.26
9.50	11.67	.22
10.50	11.63	.18
12.50	11.57	.12
14.50	11.54	.09
16.50	11.51	.06
18.50	11.495	.045
20.50	11.48	.03

ALCOA (DAVENPORT, IOWA) SLUG TEST DATA WELL AS

Elapsed Time (Minutes)	Depth to Water (Feet)	Residual Head (Feet)
0.00	16.30	.00
0.417	17.20	.90
0.75	17.14	.84
1.00	17.14	
		. 79
1.25	17.06	.76
1.50	17.05	.75
1.75	17.04	.74
2.00	17.035	.735
2.50	17.00	.700
4.00	16.95	.65
4.50	16.93	.63
5.00	16.92	.62
7.00	16.89	.59
8.00	16.87	.57
9.00	16.855	.555
10.00	16.85	.55
12.00	16.84	.54
- 14.00	16.825	.525
16.00	16.81	.51
20.00	16.80	.50
35.00	16.77	.47
50.00	16.745	.445
234.00	16.605	
313.00		.305
	16.570	.27
348.00	16.560	.26

PLATE I.

GEOLOGIC CROSS SECTION OF THE BEDROCK

UNITS RECORDED BENEATH THE

ALCOA - DAVENPORT PLANT SITE.

Over-sized Document

